«
9
H
T4
-
- .
w
&
~
-
m
,.E
]
| &
]




Hiue: ey YT .
) R R RN R ARSL AR 210, gt 1 ate 84 0%0 0100 500 00 B g a0t SNt e 100 Gur pergat
D Bt At 2 S50 50 o) o8 L R Xu P u Y] 5°0.8'0,¢" 8,80, 9°¢ TR RO -

PSRRI R

o

l

I

N
(&

L e

I

t
' MICROCOPY RESOLUTION TEST CHARY
NATIONAL BUREAU Of STANDARDS-1963 A

- N

-
R AT F Tty

e w e e a e aa -y

-

L' SNIP NP iy

o Ty e,

>

SRR

A2 EL ™

PTaTy LY 6y
I LR A

L

-

b,

)
e
A




G N 2L 0 o R % RO R KIL KM AR TN TR O ALY RN UL TR a¥ I W LA S % St a0 0t a st pALpR g te

DI rice vl

&
-

SRR .{-r'-:’;r;r; x, '\f_{' P

¢
. CMS Technical Summary Report #88-30 UNIVERSITY
MULTIPLE SOLUTIONS AND BIFURCATION FOR OF WlSCONSlN
A CLASS OF NONLINEAR STURM-LIOUVILLE
EIGENVALUF PROBLEMS ON AN UNBOUNDED o
<« DOMAIN A
3
Lﬂ Chao~Nien Chen
: (o)) b
F) \
L0 ey
M Ny
= W’
4 <L CENTER FOR THE
: é MATHEMATICAL
t
: SCIENCES
. S
[
Center for the Mathematical Sciences . \,
University of Wisconsin—Madison L
. 610 Wainut Street A
Madison, Wisconsin 53705 b,
| an
s,
.3
april 1988 Y
()
)
L) r\'_
M (Received October 12, 1987) .
: B
" )
DTIC_ §
. . \J
' . N
Approved for public release (T ELECTE
) Distribution unlimited . 0
; JuL o 71088 3 IR
y 1y,
Y |“
Sponsored by E ) ;
: U. S. Army Research Office Office of Naval Research Air Torce Office of ::
: ' P. 0. Box 12211 800 North Quincy Street Scientific Research )
Research Triangle Park Arlington, VA 22217-5000 Bolling Air Forceoggge o)
i , bC 2 oy
North Carolina 27709 washington ¥
P .
13 AN § 3 4 2
R e e e e T 8 S T o T e T A T S S B




TEpt ¥ Ua® e ® g2t 100 14¢ $o6 Gt Ga? ¥ ¥ N ¥t bat d + dat ot Sat $2% u? u¥ ut. A W TR RN Na®, v % _jiat @at¥ (TN W] ] () a

K N UNIVERSITY OF WISCONSIN-MADISON
CENTER FOR THE MATHEMATICAL SCIENCES A

MULTIPLE SOLUTIONS AND BIFURCATION FOR A CLASS OF NOMLINEAR
STURM-LIOUVILLE EIGENVALUE PROBLEMS ON AN UNBOUNDED DOMAIN !

Chao=-Nien Chen

...ﬂ B’

Technical Summary Report #88-30

April 1988
briry ™ 5
ABSTRACT 7\-/ ]
) .
- A class of nonlinear Sturm-Liouville problems is considered. These
problems admit zero as a trivial solution and the nonlincar .operator
ﬁ llnearived about zero has a purely continuous spectrum [0, +). Variational :
N
ﬁ t&chnzques.and approximation arguments are used to obtain the existence of ;
2
& nontrivial solutions with any prescribed number cf nodes and for some X
i
nonlinearities it is shown that this solution is unique. Moreover, the lowest
’J point of the continuous spectrun is a bifurcation point; infinitely many
% continua of solutions, which are distinguished by nodal properties, bifurcate
. : . . L \
i from the line of trivial solutions at this point. Results are also obtained \
L] .
in higher dimensions via investigation of the set of radial solutions of :
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§0. INTRODUCTION

Bifurcation questions for nonlinear elliptic eigenvalue problems

on unbcunded domains have recently been studied by various authors

{{1)=-{11),113],123),128],(29),(42])). They have found that the lowest

point of the continuous spectrum of the linearized operator is a

PR S

)

potential bifurcation point. In these papers, there are mainly two

[RAPLEY

(1)

kinds of bifurcation phenomena that have been dealt with:

bifurcation of solutions having parameter values in the continuous

spectrum ({1]-{8]) and (ii) bifurcation of soluticns having parameter

values not in the continuous spectrum ([9]-[11]).

In this thesis we further study such problems pertaining to

(i). We consider a nonlinear Sturm-Liouville eigenvalue problem for a

family of ordinary differential equations and a related class of

partial differential equations. In the ordinary differential equation

case, we study the boundary value problem

-u® = Ar(x)u - F(x,u)u, 0 < X € += (0.1.a)

N ‘ u(0)cos® - u'(0)sind = 0, u ¢ L2(0,=) (0.1.b)
\

where r and F are nonnegative continuous functions. F(x,0) =0 }

and 0 ¢ [0, %]- The related problem in the partial differertial

equation case is

{(0.2.a)

=ju = Jr{x)u - F(x,u)u

uw e L2@RY) . (0.2.b)

Kitpper (1], [2) first pointed out that a minimal growth condition

with respect to x for the nonlinearity is needed to ensure the

.o'l. . 0 V \' \" '\'D\,-.‘- ALY u*-.-.-.'v er_\-,-_‘- N -\r,. I\'-f'..d‘ -.’-\-_'(l_-'\r\ N \.r\ .\-._. \ .‘. \(_‘ - N T \._,_,,.
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existence of an L2-solution of {0.1). In particular, if

F(x,y) = m(x)[yla, then there exists a nontrivial L2~solution if and
@

only i1f [ w?/%x ¢ +=. The point A = 0 is the infimum of the
0

continuous spectrum. Xipper proved that for any A > 0 there exists
a positive soluticn and that these solutions form a continuum
bifurcating from (),u) = (0,0). By a continuum of solutions, we mean
a set of pairs (A,u) ¢eR x E, satisfying (0.1), which is connected
with respect to a reasonable topology in a function space E
associated with (G.1).
Applying arguments due to Ljusternik and Schnirelman, Bongers,
Heinz and RUpper [3] considered Dirichlet boundary value problems for
both ordinary differential equation and partial differential equatiocn. -
They proved in particular for problems like (0.1) and (0.2) that for

every r > 0, there exists a sequence (lér).uér))k>1 of solutions

such that nuir)n 2 =T and that 1lim Aﬁr) = o, while
L

o

lim+ lir) = 0., In the ODE case, Heinz [6] further related the
0

Ljusternik-Schnirelman critical levels associated with (0.1) to nodal

properties of solutions. This work {3] shows the problem has a
' sequence of solution "branches" emanating from (A,u) = (0,0) and a
natural open question is whether these "branches™ are connected.
Jones and Kidpper [4] studied a more restricted problem

=u®* = lu - m(x)lu'“u. 0 ¢ x ¢ t» (0.3.a)

u(0) = 0, u e t?[0,=) . (0.3.b)

They used various assumptions on « near infinity, a good model case

being w(x) = p(x)e®® with a > 0 and p(x) > 0 a polynomial. For

- B T L R S T )
.:A.':h',’lg( '(L.'. L“A\‘t'*l.'..x (4% #‘:‘ f:’"} -‘? f} ﬁ_\
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each )\ > 0, they employed phase portrait technigques to construct a

sequence (uk,k)k>1 of solutions such that Ui, has exactly k - 1
distin;t interior zeroes. Moreover, Y,y >0 as 1+ 0.
More recently, Heinz [7] treated (0.3) imposing the following
hypotheses:
j* log w is convex
2° g is monotonically nondecreasing
3* u' attains positive values
and proved for fixed 1\ that L2~solutions with a fixed number of
zeroes cannot be the limit point of L?-solutions which possess the
same nodal property. Thus, among these Lz-solutions having the same
nodal property, there is one, having a minimal (in magnitude)
derivative at x = 0, which h; called the "preferred solution”. He
showed the "preferred solutions®™ form connected sets and all of these
continua emanate from the point (0,0) ¢ R x 1?2 in some suitable
norm. Then, in [8], he used argquments of Ljusternik-Schnirelman type
to get further existence results for solutions of (0.1).
In this thesis, we will investigate various questions for problem
{(0.1):
(a) Existence and uniqueness of positive and negative solutions.
(b) Existence and uniquenéss of solutions with a prescribed number of
nodes.
(c) Bifurcation of connected sets of solutions which possess nodal
properties.
In §1, we will mainly aim at question (a) for (0.1). Under the

following assumptions:

oy T ™ W W W N v - S WL L AT AR T e N e P
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(re?) r e Cl{0,»),(0,2)) 0 <ry<r(x)<ry,<+o for x ¢ [0,=). »
A9
{F.1) F : [0,0) xR + [0,») is continuous. :\"
&~
(F.2) There exist positive numbers o¢; and continuous functions Al
S
® ‘2/01 P
wi ¢ [0,®) » (0,=) which satisfying [ w; ~dx < +=, ‘
0 e
o4
i = 1,2 such that F(x,y) > m,(x)]y] for x ¢ [0,=), ~
u."
02 o'
y >0 and F(x,y) > wylx)]y| for x ¢ [0,®), y < O. .
(F.3) 1lim F(x,y) = 0 uniformly on compact subsets of [0,=). '
|y|+0 , :
oo
(F.4) For fixed x ¢ [0,»), F(x,y) is an increasing function of vy E;
9
if y > 0 and a Jecreasing function of y if y < 0. 3
\
!
We will prove ﬂ:
G
Theorem 0.4 ) T
>
Given A > 0 and 8 ¢ [0, %ﬁ, there exists a unique positive :i
(resp. negative) solution u which satisfies (0.1). Moreover, o
| o
Q¢ Cz[O,w) N H’[O,m) and u(x) + 0, u'(x) + 0 as x + =, .
_ | >
To obtain the existence, an approximation approach will be used; ;J
\'v“
‘taking as approximate solutions those for the bounded interval case. f;
~
nJO
Compared to variational methods, our argument has the advantage that oA
[}
(F.5) F(x,~y) = F(x,y) for x ¢ (0,=), Y €R ™
need not be assumed. In the variational argument used in [3], (6] and 5:
® )
(8] the growth condition [ w-2/%x ¢ +» 1is used to give a compact ;
0 LR
imbedding property. Here, we use it to provide a prior estimates ,3f
which allow us to pass to the limit from approximate solutions. ;{
Y
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- Unigueness will be proved with the aid of several useful
K "monotonicity" properties for positive and negative solutions de?ived
from the monotonicity assumption (é.d). Also, in the proof of the
existence result, "monotonicity®™ properties will be used to prevent
. the limit of approximate solutions from degenerating to the trivial
solution.
In §2, a method that pieces together alternately positive and
! negative solutions on adjacent intervals will be used to obtain
solutions with a prescribed number of nodes. This idea originated
. with Nehari [15] for a bounded interval. The same kind of technigue

was generalized to an unbounded domain by Ryder [16]. Hempel [17]

B

N
also used such an approach on a rather different class of equations

for a bounded domain. Our argument is closely related to Hempel's.
However, we treat the problem for the unbounded domain case. Our main
: result in §2 is:

: Theorem 0.5

y : Assume (r.1), (F.1)-(F.4) and (F.5) are satisfied. Given ) > 0

and o ¢ [0, %]. Then for every n > 1, there exists a solution

which satisfies (0.1), having exactly n - 1 =zeroes in (0,»), and

L being positive (resp. negative) in a deleted neighborhood of x = 0.
In §3, with the help of the "monotonicity" properties of §1, we

use the solutions obtained in §2 as starting points and construct an

iteration scheme to geg the result of Theorem 0.5 under the weaker

; symmetricity assumption:

& (F.5)' There are positive numbers § and X such that

P(x,-y) = F(x,y) for x e (X,») and |y| < 6.

-,
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In §4, we consider the probler with a special ferm for the
nonlinearity
-u”" = Ju - w(w{x)lulc)u, 0 < x € 4+ (0.6.a)
u(0)cosd - u’'(0)sing = 9, u ¢ L2[0,a) R (0.6.b)

Assuming ¥(t) > ptd, P* > 0, w'(0) > 0 and
w'
(wel) - is nondecreasing on [0,=).

We prove the uniqueness of solutions having a prescribed number of
nodes. Since the problem Heinz treated in [8] is a special case of
(0.6), we solve a guestion which was left open in [8]. Having this
uniqueness result we then show that there are infinitely many
continuous curves of solutions for (0.6) which are characterized by
their nodal properties. Each curve can be parametrized by the
corresponding eigenvalue parameter A and all these curves bifurcate
from (0.0).

In §S, we give a bifurcation result which is applicable to more
general nonlinearities. However, the result is weaker than that in §4
in that only connected sets rather than curves of solutions will be
obtained.

In §6, we study radial solutions of (0.2). lLet p denote the

radial variable. The growth condition f m'z/odx < » in the one-
0 o«
N-1 =2/g
dimensional case will be replaced by a parallel one, f P w do
0

< +@ here. If 4 ({x) = w(p) for !xl =0, X € RN, this is

equivalent to [ G-z/odx < +» which has been used in [3] and [8]
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although they considered general solutions rather than radial ones.

L}

!‘ '
? However, looking for radial solutions allows us to pursue soluticns )
L) . )
. with nodal properties. The main new difficulty here is the occurrence -
) -

of a sirgularity in the equation at the origin. We overcome this
b difficulty by making an additional approximation. Using a ;

i {
N transformation of variables and results established in previous f

sections, we obtain analogous results to those in the one-dimensional £

K)

3 :
) 3

case. \
)
. ]

! s
v B
A
o »
& .

o o 4
3 ‘ .

] .

O‘ .

‘ .
R »
K ht

. h
)

3 g
2 .
; .

, N
I .

o r
R/

F) .
"9 A
V‘ N

U ~
o N
’ \

\
“

AN Y I L R I D S I . « - - - e -
T8 Vi, T e, T LT A e R A T A e T A NN A, AT




§1. EXISTENCE AND UNIQUENESS OF POSITIVE AND NEGATIVE SOLUTIONS

) N . .
In this section, we will obtain existence and uniqueness results

L L. C C C 5 0

I' [] 1]
) for positive and regative solutions for the following problems
\ N

-u”® = Ar(x)u - F(x,u)u, a < x < += (1.1.a)

K (),

(1.1.b)

ul(ajcos8 - u'la)sing = 0, a e Lz[alm)

[}
X where a » 0 and 0 < 6 < %u Throughout §1-§5, prime will always

denote differentiation with respect to the space variable. The

functions r and F are assumed to satisfy

(r01) r € C( [0,“’),(0,”)), 0 < r1 < r(x) < rz 4+ for X € [0,“).

(F.1) F : [0,) xR » [0,») is continuous.

(F.2) There exist positive numbers gi and continuous functions

s wg ¢+ [0,=) > (0,») which satisfy [ w; dx < +=, 1 =1,2, Ny
0
. o]
such that F(x,y) > m1(x)ly] T for x ¢ (0,=), y > 0 and 4

».

g
F(x,y) > mz(x)ly] 2 for x e [0,»), ¥y < 0.

X

(F.3) lim F(x,y) = 0 uniformly on compact subsets of ({0,=).

ly]+0

(F.4) For fixed x ¢ [0,=»), F(x,y) is an increasing function of y

‘ if y > 0 and a decreasing function of y if y < 0.

(B TS S I 258 L S
-y A

By a solution of (I), we mean u ¢ c2la,=) N A'(a,=) which satisfies

(1.7).

Now, we state the main existence result for positive and negative

gsolutions:

Theorem 1.2

IR

Suppose (r.1), (F.1)=-(F.4) are satisfied. Given A > 0, a > 0

and 0 < 8 < 2 there exists a positive (resp. negative) solution u

2

T T 4
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which satisfies (I)a and

lim u(x) = 0, lim u'({x) =0 .

X+® . X+m
\
Remark 1.3
The existence result of positive and negative solutions has been
obtained via different methocds ([1]-{8]}). However, they only treated
the boundary condition 6 =0 in (1.1.b). 1In [3], [6) and [B] the
authors imposed the minimal growth condition on the function
gix,y) = 2£%§LZL where f{x,y) = F(x,y)y. It is easy to see if
F(x,y) > w(x)|y|° and %5 exists-then, by (F.4), gi{x,y) = F(x,v) +
Y QE%§LXL > Fix,y) > m(x)[yla. Also, they assumed an upper bound
for g(x,y) which we do not neegd.
Our strategy is to approximate solutions of (I), by those of
-u" = Ar(x)u - F(x,u)u {1.4.a)
(I)a,b
u(a)cosd - u'{a)sind = 0, u{(b) =0 . (1.4.b)
Existence results for (1.4) have already been establish;d in the
literature (e.g. {24]). A partial uniqueness result is known for
(1.1). The more general form we require is:
Theorem 1.5
Suppose (r.1), (F.1) and (F.4) are satisfied. ILet A > 0, a > 0
and 0 < 8 ¢ %- be flxed. 1f u4q,uy; are two solutibns of (I)a,b
(resp. (I),) such that u4q,uy > 0 or uq,uy < 0 on (a,b) (resp.
(a,=)), then
uy 2 u; in [a,b] (resp. ([a,=)) .

Since the proof of Theorem 1.5 will immediately follow from a

“monotonicity” lemma, we postpone it till then.

-,n‘l._\r.'r\r.'--sv.. -.'r " "-.‘- AT A LT YN \’. LSS
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Remark 1.6

(g) For a bounded or unbounded domain with 8§ = 0 this result

’ has been obt;ined by several authors (e.g. [1],(3],(4],(6],
{73,017).022]).

(b) We will let V.(i,a,b,8,+) (resp. V.{(r,a,=,9,°))
represent the unique pcesitive and negative solution for
(I)a,b {resp. (I);) respectively. When some of parameters
A,a,b,8 are known or considered fixed they will ke
suppressed in the above notation.

{c) If the function F in (1.1.a) is further assumed tc satisfy
F(x,-y) = F(x,y) for x ¢ [0,»), ¥y ¢ R, then it is clear
that V_ = -~V_.

To prove Theorems 1.2 andn1.5, we need some preliminaries which
including technical results, "monotonicity” lemmas and estimates of
solutions for (I), and (I), j- We first state a result of Wintner and
Hartman [21].
lemma 1.7

Let ¢4 and ¢ be continuous functions on [a,») such that
91 4is bounded from above and ¢; € Lz[a,o). If u is a solution of
the differential equation u"(x) + g{(x)u(x) = gp(x) and u e L?(a,=)
then u ¢ H1[a,m) and u(x) »+ 0, u'{x) 0 as x + o=,

Next, we prove two technical lemmas.

Lemma 1.8

Suppose g¢,,9, € Cla,8] (resp. [(a.,=)). Then there are ro

functions u,v ¢ Czlu,B] {resp. [a,»)) satisfying

u(alv’(a) - u'(a)via) € 0 (1.9)

L 2 A A OO L St R e P )

STAT N T A AT AT AT e T
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u(B)v' (8)-u'(B)v(8) > 0 (resp. lim u(B)v'(B)-u'(B8)v(8) > 0) (1.10) .

§ B+ .
L]
a and for x ¢ (a.B8) (resp. (a,=)) ’ :
! | | awev>0
0 =u” < gq(x)u (1.11)
d ~v" > ga(x)v (1.12) 3
R :
; 92 > 99 + (1.13)
5 Moreover, at least one of inequalities (1.9), (1.10) is strict or at 1
f least one of (1.11)=(1.13) has strict inequality on a subinterval of S
¢ (a,8) (resp. (a,=)). 3
% Proof
\f If u,v > 0 mltiplying (1.11) by -v and (1.12) by u and p
b adding together, we obtain ‘ i
f' utv = vhu > (gy(x) ~ gq(x))uv . (1.14) ;
if Since u"v -~ v"u = (u'v -~ v'u)' by integrating (1.14) on \
;: {a,B], we have ) E
& w* (B)v(B) = v'(R)u(8) - u'(a)v(a) + v'(alula) ;
: 8 :
- > [ (ga(x)~pq(x))uvax . (1.15) 5
‘ a 3
‘ From (1.9) and (1.10) we know the left-hand side of (1.15) is
'j nonpositive and is negative if at least one of inequalities (1.9), }
(1.10) is strict. On the other hand, the right-hand side of (1.15) is ]
: nonnegative and is positive if ¢5(x) > ¢¢(x) on a subinterval of
;i {a,B8]. Finally, note that the inequality of (1.15) is strict if ,E
: (t.11) or (1.12) is strict on a subinterval of (a,8]. Therefore, if ?
l‘ one of the above cases occurs, we have a contradiction to (1.15). :
: ’
' .

e AL ey e e N ih ,
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In the case of (a,»), the proof is the same except for letting

8 +® in (1.15). The proof for the case u,v < 0 is similar. We

S

omit it. . y'
1
Corollary 1.16 )
]
Suppose g¢4,93 € Cla,B] (resp. [a,=)) and let u,v ¢ sza,B] g;
-
Nt
{(resp. [a,=)) such that u(a) = v(a) and u(B) = v(8) (resp. ¥
b
1lim u(B)v'(B) -~ v'(B)v{B) = 0). If, for x ¢ (a,8) (resp. (a,=)), ;
Bre ::-’;
we have (1.11)=(1.13) and one of them has strict inequality on a ‘:
O
subinterval of (a,8) (resp. (a,»)). Then neither $
'
(1) u(x) > v(x) >0 for x ¢ (a,B] (resp. ({a,=)) Li
:»
nor W
(11) w(x) <u(x) <0 for x e [a,8) (resp. [a,=)) N
can occur. )
X
4
Proof ~:
]
Suppose (i) occurs, then u'(a) > v'(a) and u'(B) < v'(8) in v
Eh
the case of [a,8), hence (1.9) and (1.10) are satisfied and a )
contradiction immediately follows from Lemma 1.8. An analogous Bt
5
argument takes care of (ii). We omit it. ;
Having these lemmas as consegquences, we are going to establish !
. L4
several "monotonicity” properties of positive and negative solutions .
for (I), , and (I),. In the remainder of this section, when the proof N
4 '
for the positive solutions is the same as that for the negative %.
.
solutions we will only carry out the former. :\
)
:
iy '
<
5
I) d
!; v
)
U
-
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, Corollary 1.17
)
k et v and v be positive (resp. negative) sclutions of (1.18)
W
‘o and (1.19) respectively:
‘al .
> -u" = Ar(x)u - F(x,u)u (1.18)
2,
- ~v" = ys(x)v - H(x,v)v . {(1.19)
>
\; Suppose the functions r.s and F,H satisfy, respectively, (r.1) and
d (F.1), (F.4). 1f -
o
o Ar < us (1.20)
§
and
{ F»H (1.21)
oy then
) (
“ (1) If u and v satisfy (1.4.b), we have 1
u
‘3 Iu(x)l < {v(x)] for x ¢ (a,b) if © =0 and for
- x e lab) if 0<8 <, (1.22)
B
T et (®] < Jvitb)] ana |urta)] < |v'(a)] . (1.23) |
’~ (i1) If u and v satisfy (1.1.b), we have
1,43
3 ) Iu(x)l < |vix)| for x ¢ (a,®) if 8§ =0 and for )
y ' .
hY x ¢ la=) if 0<8 <, (1.24)
. and lurta)] < |vra)| . - (1.25)
- Moreover, if the inequality (1.20) is strict or F(x,y) > H(x,y) for
Y y ¥ 0 then inequalities (1.22) and (1.24) are strict. )
& Remark 1.26
,l
. "
> This generalize results of Kipper [1] and Heinz [6] where they ;
2 :
<. treated the case 6§ = 0 and obtained the "monotonicity" of solutions d
]
M with respect to the eigenvalue parameter ). ;

A AT RIS TR I T T TR TR Y
s aNs W e M Y
v Bl B LR ANl LN ot | e e ) g L

AL A D b B L B L 2




".'.'!'I'l.w".l"".'.‘«

Proof

(1)

..‘. [OEY \. " ! .. R \.\. W' \NI Y ._z\.(*r. -~ v‘._- . f‘\f\ v, \ \-‘ -I'.\- \I" z\I\J‘\f\
. 0 A. .LL .\. oS At N

14

Suppose u(t) > v(t) > 0 for some ¢t ¢ (a,b). By the
continuity of u and v and the boundary condition (1.4.b) we
know there is a subinterval (a,B8) of (a,b) such that either

1 u(x) > v(x) > 0 for x ¢ {(a,B8) and

u(a) = v{a), u(B) = v(8)
or

2° a=a, u{x) > v(x) >0 for x ¢ [a,8), u(B) = v(B).

Suppose first that 1° prevails. Let g4(x) = Arxr(x) -
F{x,u(x)), ¢5(x) = ps(x) = H(x,v(x)) for x ¢ [a,B)}. Then it
follows from (F.4) that F{x,u{x)) > F{x,v(x)) for x ¢ [a,B].
Thus, together with that Ar < ys and F > H, we have

¢2(x) > ¢4(x) for x e [a,B) . (1.27)
Applying Corollary 1.16, we get a contradiction. Therefore 1°
is not possible.

Next suppose that 2° holds. Arguing like the lkeginning of
the proof of Lemma 1.8, with the same g¢4,95 as defined above,
we obtain

a'(g)vi{B) - v*'{(8)u(8) - u'(a)v(a) + v'(a)u(a)
. B
= [ (ga(x) = py(x))uv . (1.28)

From (1.4.b), we have

u'(a)v(a) - v'(a)u(a) =0 (1.29)
and it is clear that

u(Biv'(8) - u'(B)v(B) > 0 .

Applying Lemma 1.8, we conclude that 2¢ is also impossible.
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3
- - Therefore (1.22) must te valid, and (1.23) immediately follows
; from (1.22). Moreover, if u(t) = v(t) for t ¢ (a,b) in the
ig case @ = 0 and for t ¢ [a,b) 41in the case 0 < 8 %u then
A. letting 2z =u - v, we have z(t) = 0 and 2z{x) ¢ 0 for
oA
x ¢ la,b]l. Thus 2z has a maximum at t. However, from (1.18)
&
o and (1.19)
8.
. z"(t) = [F(t,u(t)) = H(t,u(t)) + us(t) - ar(t)lu(v)
)D
-{ which is positive if the inequality (1.20) is strict or
o
e: F(x,y) > H(x,y) for y # 0. This contradiction indicates the
-} inequality (1.22) in this situation must be strict.
)
»d* (11) Suppose again that u(t) > v(t) > 0 for some ¢t ¢ [a,=),
Ly
h; by the boundary conditions u,v ¢ Lz[a,w) and Lemma 1.7 we know
. that u(x) #+ 0 and v(x) + 0 as x » +=. Hence by the
]
3 continuity and boundary conditions (1.1.b), there is a
f
K subinterval (a,B8) of (a,») such that either 1® or 2° as in
v (1) occurs except that now 8 could be +=.
sa
o In case B is finite, the proof is contained in (i). Thus
A
K- we consider the situation that B8 = +=. With the same 44,95
- as above and by the same reasoning as shown in (1.27), we have
)‘. .
& 92 > 91 for x e [a,®) . (1.30)
E) .
s From lemma 1.7, it is easy to see that
< lim u(x)v*(x) - u'(x)v(x) = 0 . (1.31)
x>+®
.‘
g Hence it is clear that 1° is contrary to Corollary 1.16.
. Therefore, we consider 2°. From (1.1.b), we get (1.29). This
K
¢ together with (1.30) and (1.31) contrary to Lemma 1.8.
Y
()

, - . - - A A . Y “a
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Therefore (1.24) must hold and the last assertion implies
(1.25). Finally, the same argqument as in (i) shows the
inequality (1.24) is strict provided that the inequality (1.20)
is strict or F(x,y) > H(x,y} for y # O,

Proof of Theorem 1.5

let u and v be positive solutions for (I}, p (resp. (I),),
’

then it fcllows from (1.22) (resp. (1.24)) that u > v and v > u.

i

Therefore, u Ve

Corollary 1.32

let u and v be positive (resp. negative) solutions of
equation (1.1) and satisfy, respectively, the boundary conditions

either

(1) u(a)cosB,; - u’(a)sing, = 0, u(b) = 0 (1.33)
v(a)cosd, - v'(a)sinb, = 0, v(b) =0 (1.34)

or
(11) u(a)cos@, - u'(a)sing, = 0, u ¢ L2[a,w) (1.35)
v(a)cosh, - v'(a)sind, = 0, v € L2(a,®) . (1.36)

Assume (r.1), (F.1) and (F.4) are satisfied. If 0 < 84 < 65 < 1
then
lu(x)[ < |v(x)| for x ¢ [a,b) in case (i) (1.37)
or
lutx)| < |vtx)| for x ¢ la,») in case (1i) . (1.38)
Moreover, if 6, > 64 and we further assume
(£.1) f(x,y) 1is locally Lipschitz continuous in ¥y

then inequalities (1.37) and (1.38) are strict.

S N e T
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Suppose u,v are positive solutions and u(t) > v(t) 5 M}

for some ¢t ¢ (a,b). A:guiné as in the beginning of the proof

of Corollary 1.17 (i), we proceed to the situation 1° or 2° as

1 in there. ILet g¢,(x) = Ar(x) - F(x,u(x}),

95(x) = Ar(x) = F(x,v(x)), it follows from the assumption

(F.4) that ¢, > ¢y and hence !° violates Corollary 1.16.

To consider 2°, suppose first 0 = 84 < 85 < 7. From

61 =0 and (1.33), we know u(a) =0 and u'(a) » 0. Since 1

v(a) > O,

u(a)v'(a) = 0 ¢ v{a)u'{a) .

If 0<B8y<B8,<m, (1.33) and (1.34) are equivalent to

u'(a)

a(a) = cote1 ¢ . Y,

v'{a)

- -

Since cotf4, > cotf,, we get

u(a)v*{(a) < v(a)u'(a) . (1.39)

since

Also,

Thus, we have (1.39) in either case.

for x ¢ {a,B8) and u(B) = v(8),

a(x) > v(x) > 0,

v'(B) » u'(f). Hence

u(B)v'(B) ~ u'(g)v(g8) >0 .

But then lLemma 1.8 shows this is not possible and hence u < v.

SEL A SN

To prove the final assertion, suppose ul(s) = v(s) for some

! s ¢ (a,b). Then (1.37) implies u'(s) = v'(s). If (f.1) is

T

satisfied, the basic existence-uniqueness theorem for the

R TR R R
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v'(a) = 0. Then v = 0 via (f.1), contrary to hypothesis.
i (11) The proof is the same as in (1) except for handling the case
: B = +». This is easily carried out, using Lemma 1.7, as in the
: proof of Corollary 1.17 (ii).
Before continuing giving more "monotonicity" properties of
solutions, we quote a known existence result for (1.4). ILet
Up = wpla,b,8), (n = 1,2,3,...) be the n-th eigenvalue of
; -y" = Ar{x)v, a<x<b (1.40.a)
‘ v(a)cpsd - v'(a)sing = 0, v(b) =0, (1.40.b)
the linearized equation of ‘I)a,b linearized about the trivial
1 solution u = 0. It is well-known (see [27]) that
, 0 < ug < ug < oee €y < vos (1.41.a)
i 1im p,(a,b,8) = 4=, (1.41.b)
; ns>o
the functions u, are confinuous in a, b and 6, and for fixed
a and 6, the yu, are decreasing functions of b such that
;::* up(a,b,8) = 4=, (1.41.¢c)
and

‘l‘o..l'u, |’l c.l‘o!l'l ..o.l.’l" l'-l.o. W V

A R U U T T TR,

initial value problem tells us
Que to their different initial conditions at a. Thus
¥Ix) > ulx) for x € (a,b).
Next, if u(a) = v(a) > 0, then (1.33),
with 0 < 94 < 85 < 7 imply wu'(a) > v'(a),
tells us that u'(a) < v'(a) which leads a contradiction.

Finally, if u(a) = v(a) = 0 it follows from 6, > 0 that

,...O.o'l‘p. .- () a...h'- 0 ‘o"ﬁ .l 3 . . . ‘-, “1. !\

ATRh

(1.34) together

however (1.37)

18

u = v which is obviously absurd
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lim un(alb'e) = o . (1-410d)
béx

Moreover, if a and b are fixed, y, are decreasing functions of

e for o<e<§. .

Remark 1.42

We use the notation uy,(a,b) when 8 is known or considered
fixed and simply write yu, if a, b and 6 all are fixed.

We denote by s;,b‘n(x,e) (resp. S;lb'n(x,e)) the sets of
u € C'{a,b] such that u satisfies (1.4), u > 0 (resp. < 0) in a
deleted neighborhood of x = a, u has exactly n - 1 simple zeroes

in (a,b) where X > 0, 0 < 8 <-§ and n » 1 is an integer.

Proposition 1.43

be

[SYE ]

Suppose (r.1), (F.1)-(F.3) are satisfied. let 0 < 8 <

fixed

]
[~}
.

(1) If XA < uy and u is a solution of (I)a,b then u =

(11) If A <y, and u is a solution of (I), ) then

*

s b,alr8).

ugs
(114) Por any A > uy, S3 p (X,8) # 4 and S, p ;(1.8) # 8.
Remark 1.44
Proposition 1.43 is actually a special case of a more general
result in [25] and (F.2) can be replaced by any assumption which

insures that F(x,y) + @ as |y| + +=.

Corollary 1.45

Suppose (r.1), (F.1)=(F.4) are satisfied

(L) let 0 < 8 < %- be fixed in (1.1.b) and (1.4.b). If

) u,(a.b.a) and b < by < +» then for x ¢ (a,b)

A

et d

o

Y
A

b o g g % BE SN PN
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Ivt(xlalblx)' < lvt(xra:b“lx,l L] (1:46)
If 0<9<3J, (1.46) holds for x ¢ [a,b). If 0< 6 <7§
lvéik,a.b,a)l < IVE(Xla,b’Ia)l . (1047)

(11) TLet 8 =0 4in (1.1.b) and (1.4.b). If A > uq{a,b,0) and
¢y <a tren for x ¢ [a,b)
[Vetria,b,x)| < |Vetr,aq.b,x) | (1.48)
and
[Vica,a,b,b)] < [Vitr,aq.b.0)] (1.49)
If A>0 and ay < a2 then for x ¢ [a,»)

[Ver,a,ex)| < |Vatr,aq,=x)] . (1.50)

(1ii) et 0 < 0 < %- be fixed in (1.1.b) and (1.4.b) and
A > uq(a,b,8). Let.aqy < a and Fy(x,y) = F(x,y)/r(x). If
for all fixed y # 0, F1(x.y) is nondecreasing in x, then
(1.48)~-(1.50) hoid.

(iv) Let 8 =10 4n (1.1.b), (1.4.b). If X > py(a,b,0) and ay <
a<b <by<+o then for x e [a,b]

|V+(X,a,b,X)| < |V+(X,a b .x)l . (1-51)
b < * 1701

(v) Let 0 < 6 < %- be fixed in (1.1.b), (1.4.b). Suppose for fixed
y#¥ 0, Fy(x,y) is nondecreasing in x. If 1A > u4(a,b,6) and
a4 ¢ a<b<by < 42, then for x ¢ {a,b] (1.51) holds.

Moreover, if (f.1) is further assumed, all inequalities (1.46)~(1.51)
except for the inequality (1.50) of (iii) in the case o = %- are

strict. The exceptional one is also strict provided that in addition

F F
to assuming (f.1), 3;— >0 and 3;— >0 for y»¥ 0 are also

satisfied.
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- Remark 1.52
In this corollary, we suppress the dependence on 6 from our
notation V..
Proof
(1) Put u = V+(A.a,b,-) and v = V+(A,a,b1,-). Suppose
u{t) > v(t) for some ¢t ¢ (a,b). By the continuity of u,v
the positivity of u,v and the boundary conditions u(b) = 0
we proceed to the situation 1° and 2° as in Corollary t1.17 (i).
With g¢q(x) = Ar(x) = F(x,u(x)) and g¢3(x) = {r(x) - F(x,v(x))
the same proof as in there shows both 1° and 2° are ixpossible.
Thus (1.46) holds and hence (1.47) follows.
(11) Set u=V_(),a,b,+) and v =V_(),ay,b,¢). Suppose
u(t) > v(t) for some ¢t ¢ (a,b). Then the boundary conditions
uf{a) = u{b) = 0 together with the positivity and continuity of
u,v imply the situation 1° as above must occur which is
contrary to Corollary 1.16. Thus (1.48) holds and (1.49)
consequently follows. Since the proof of (1.50) is the same as
above, except for treating boundary conditions at infinity,
which has been done before, we skip it.
. (4i1) Let u =V, (),a,b,¢), v =V, _(r,aq.b,e). It is known (see
e.g. {24], Chap. 4) that v can not have a double zero, that

is, we have vz(x) + v'z(x) # 0. Hence the Priifer substitution

([40], Chap. 10)'can be made as follows. Define p(x) = vz(x)

v(x))'

v 00 then v(x) = p(x)sint(x),

+ v'z(x), 1(x) = arctan

L o "??’7*?r‘#?f?fff?rffff?ffffr:a“f‘u'::a;;‘ffr‘r“f‘:jf;a‘c‘f‘('r‘;:r:J“wjzlik
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v'(x) = p(x)cost(x), t(ayq) = 8 and

gi-= [Ar(x) - F(x,v(x))]sinzr(x) + coszr(x) .

It is easy to see that
If T(t) € [01 ';L) U (12"1 TT] and F«I(tlv(t)) < A,

dr(t)
dx

or t(t) =2 and Fy(t,v(t)) < A, then >0 . (1.53.a)

Also, since v(x) 1is a positive solution, 1(t) ¢ (0,w) for

t € (a4,b). We claim

If Fy(t,v(t)) > A then <(t) X [0, 3] - (1.53.b)

P

If F,(t,v(t)) > A then t(t) X [O,

NE]

) . (10530(:)

Indeed, by (1.1.a) F,(t,v(t)) > A implies v"(t) > 0. Suppose

T{t) ¢ [O, %] then v'(t) > 0. Hence v'(x) >0 for x e (t,t + ¢)
with some ¢ > 0. Since v(t) » 0, v(x) > v(t) > 0 for

x € (t,t + g]. Suppose there is an ¢35 > 0 such that

€g = sup{e]v'(x) > 0 for x ¢ (t.t + )} .

Then, since F1(x,y) is nondecreasing in x and, by (F.4), is
increasing in y, Fy(t + gq,v(t + g4)) > F(t,v(t)) > A. Hence by the
same reasoning as above there exists a 6 > 0 such that v'(x) > 0
for x ¢ (¢t + €get + €g + §) which is contrary to the definition of
€g° Therefore v(x) > 0 and is increasing for x > t. But this is
contrary to w(b) = 0. Thus, we have (1.53.b). Also, the same proof
except for replacing vi(t) >0 by wv"(t) >0 and v'(t) > 0 by
v'(t) > 0 yields (1.53.c).

Now, suppose u(t,) > v(ty) for some ¢t4 ¢ {a.,b). Argquing like

the beginning of the proof of (i), we face situation 1° or 2¢ as in

¥
A
1)
(9
R
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{(1). Now, 1° is not pussible as before. To handle 2°, i.e. there

exists a B < b such that u{x) > vi(x) >0 for x ¢ [a,8) and

u{8) = v(B8). Wote that (1.53.a) and (1.53.c) imply

T dzit)
if t(t) ¢ [0, 5) then ——=> 0. (1.54.a)

dence, if 6 ¢ (0, %J this implies t(a) > 8. So 2° is contrary to
(1.37). It remains to show the case of § = %u In this case, since

g = % if 1(a) >-;'- by (1.37%. u(a) < v(a) which violates the

assumption of 2°. Hence, t(a) < and v'{a) > 0. LlLet

I
2
s = Inf{a]v'(x) > 0 for x e (a,al} .
Since v'(ay) =0, s > ay. Clearly v'(s) =0. If v"(x) < 0 for

x € (s5,a), v'(a) < 0 which is absurd. Therefore there exists an

P

a4 € (s,a) such that v"(aq) > 0. By (1.1.2), Fqlaq,v(aq)) > x.
However, since by the definition of s, v'(a) > 0 and t{a) € [0, %)
which is contrary to (1.53.b). Therefore 2° is also impossible when
gu So we obtain (1.48) for 8 € (0, %] and conseqﬁently (1.49).
To prove (1.50) let u =V,.(2,a,»0), v =V, ,(1,a,,20). We first

g =

) note that (1.53.a) and (1.53.b) are still valid. The only difference

in the proof of (1.53.b) is to replace v(b) = 0 by 1lim v(x) = 0.
Y X+o

We omit the pronf for the same reason as mentioned in (ii).

(iv) and (v) immediately follow from (1.46), (1.48) in (ii) and
in (1i1) respectively.
R If (f.1) is satisfied and the equality occurs, by the unicueness
result for the initial value problem u = v. In (i), this implies
v(b) = 0. Since v > 0 in [a,b1], v'(b) = 0. But v cannot have a

double zero. Thus the inequalities (1.46) and (1.47) must be
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strict. Similarly u = v cannot occur in (ii), (iv) and (v). To X
’ consider (iii). If 8 ¢ (0, %J. as we mentioned before by (1.54.a), ':
t(a) > 8. Hence, from Cerollary 1.32, u(a) < v(a). So uwu=v is s
not possible. The remaining case is @8 = %u Again, let ¥
{ v =V, (a,b,*). We claim :
1f b<+» and T(t) =% for t e lagb) 5
{ then F, (A,v(t) < A . (1.54.b) A
v 1
4,
'.
Indeed, pick a by > b and put vy = Vu(A,t,by,e). By (i), we have "
h 3
vql(t) > v(t). Thus, if Fq(A,v(t)) > A, by (F.4), v
Fq(A,vq(t)) > A. This tougether with vj(t) = 0 contradicts H
4
‘ (1.53.b). Now if u =1V, (A,a,b,+), for b < 4=, and u = v, then Y,
D) '
v'(a,) = v'(a) = 0. By (1.54.b) and (1.1.a), v"(a,) < 0 and oW
. v"(a) < 0. Hence, there exists an ¢ > 0 such that v'(x) < 0 for ’;
y -
3 x € (aj,ba9 + €) and v'(x) >0 for x € (a ~ g,a). This implies
v has a minimum at scme point B8 ¢ (ajq,a). Thus v'(8) =0 and
i v"(8) >0 i.e. 1T(B) = %- and F4(B8,v(B)) » A + .ich is contrary to -
# (1.54.b). Therefore inequalities (1.48) and (1.49%9) must be strict :l
‘ »
" ’
even for the case § = 3¢ S
, To show the last assertion, let u = V+(x,a,m,-) and E
v=1{.(x,aq,2*)e Suppose u =v then v'(a) = v'(a,) = Q. f‘
Obviocusly, if v"(a) > 0, by (1.1.a) Fq(a,v(a)) > A which is -
. contrary to (1.53.b). Suppose v"(a) < 0, then v'(x) > 0 for 3
x ¢ (a - g,a) with some ¢ > 0. Let -
! -
z - Inf{alv'(x) >0 for x € (a,a)) . "
) N
: 1
‘ Y
\ !
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v

Obviously, z > aq. On the other hand, v(x) < v(a) for x ¢ (a,a).

s aF 3F1

' — _—

: Since Y™ > ¢ and by (F.4), 3y > 0, we have Fy(x,v(x)) <
¢

F1(a,v(a)) for x ¢ (a,a). By (1;1.a), Fy(a,v(a)) < A. Hence, for
x € [a,a), Fy(x,v(x)) < A and by (1.1.a), v"(x) < 0. This together
3 with v'(a) = 0 implies +v'(z) > 0 which contradicts the definition
of 2z. Thus v"{a) < 0 is not possible and it remains that

v"(a) = 0. By (1.1.a), Fq(a,v(a)) = A. Define the function [ by

[ 3F
P,(x,L(x)) = A. Clearly, the assumption 3;1 > 0 implies [(x) is

well~defined. It is also easy to check by implicit function theorem

3P1 3F1
that L['(x) = e (x.L(x))/-3;~ (x.,L(x)). Since L'(a) < 0 = v'(a)

: and L(a) = v(a), L(x) > v(x) for x € (a - g,a) with some ¢ > 0.
This implies F,(x,v(x)) < A and by (1.1.a), v"(x) < 0 for such x.
Hence v'(x) < 0 for those x. Then arguing like the case
b v"(a) < 0, we obtain a contfadiction again. This completes the proof.
Remark 1.55 .
(a) (1.53.c) and (1.1.a) ;mply V;(A,a,b,e,a) <0 for b < +o and
8 ¢ (0, %) provided that (r.1), (F.1), (F.3) and (F.4) are

satisfied and F1(x,y) is nondecreasing in x. Also note that

the proof of (1.53.c) does not need the assumption (F.2).

! However, it ensures the existence of V+(x,a,b,e,-).

(b) If (r.1), (F.1)=(F.4) and (£f.1) are satisfied (1.54.b) and
(1.1.a) imply VI(X.a.b, -;— a) <0 for b < +=. Moreover,
(F.2) can be replaced by an assumption which ensures the

existence of UV, (),a,by, %v *) for some by € (b,=).
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From Corollaries 1.32 and 1.45, we have an immediate consequence:

Corollary 1.56

Assume (r.1), (F.1)~(F.4) are satisfied. Let 1> 0, a > 0
and 9§ ¢ [0, %] be fixed. If u 4is a solution of (I),, then
V_(x.,a,=,0,x) ¢ u(x) < Velr,a,=,8,x) for x ¢ [a,»).

Proof

If u = 0, there is nothing to prove. Suppcse u Z 0. Let 2z
be i~th zero of u in (a,=), { = 1,2,... . Note that if u has
infinitely many zeroces in (a,=), (1.41.c) together with Proposition
1.43 (i) shows that {z;} cannot have an accumulated point in (a,=).
Since on each interval [z;,z;44], u(x) = V,(X,24,2544.0,x) or
V_(X,25,2541.0,x). Also, on the interval [a,zq], u(x) =
V,(x,a,z4,08,x) or U_(A,a,zT,é,x). By Corollary 1.45 we know

L(da,=0,x) < Up(hiz5,2549,0,%) € Vp(h,2,2,0,x), x € [zq,2,]
and

v_(koal‘”lelx) < Ut(xracz1oerx) < U...(Ala:"ce,)()r X € [3021] D

Since, by Corollary 1.32,

V_(La,w,a,') < Vt(xlalwlol‘) < V+(x0alulel.)

for 0 ¢ [O, %J, we complete the proof if u has infinitely many
zexoes. Suppose u has only finitely many zeroes, say 2. Then, on
the interval {zg,=), ulx) = M,(x,zl,u,o,x) or lL(x,zl,a,O.x). By
Corollary 1.45,

V.(xcao“’aocx) < Ut(xczzl“loox) < U+(llaaaco:x)l X € {zzc") .

Thus, together with the above inequalities, the result follows.
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-~ Having established these uniqueness and "monotonicity" .
¥ iyt
: properties, we are going to obtain several upper bounds for u ;nd w3
i ’ ‘ y
u' in terms of ]}, r, and bounds involving w; and wye 4
. It
Lemrma 1.57
| Suppose (r.1), (F.1) and (F.2) are satisfied. Let A > 0 and
0 ¢ 8 <7 be fixed. Let u be a solution of (I), ;. Then, for
any 0 < a<b< +m, o
! 'Q‘
\ ~ by
3  , < K,(%,a,b) < Ky(h,a) (1.58.a) "
i L [a,}F] ':
]
u'a < Kz(k,a,b) < Kz()ua) (1.58.b)
b L [a'b] v n
ur < Ky(2,2,b) < K3(h,a) (1.58.c) A
\ L (a,b] :
P N
' 'y < K,(x.a,b) < Kglr,a) (1.58.d)
! it
: where h
; 2 1/0 b -2/0 \‘
‘ X (vab) = § ) S w  tax /2
1 2 i
i=1 a N
1/2 N
xz(x,a.b) - (Arz) K1 ::
~ ~ o~ 172 '
x3(x,a,b) = (2K1 . Kz) 3
A
K4(X.a,b) (Arz) K3 ]
and -
: K, (A.,a) = lm K (A.a.p), 1¢i¢a. (1.59) Y
, bee g
Proof .
Suppose first u is a positive solution of (I)a,b' Multiplying 1
| “d
; (1.4.2) by u and integrating it by parts we have )
' ' 4
) .‘

3
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b b b
u'(a)ufa) - u'(b)ulb) + [ u'?ax + [ F(x,u)u?ax = A [ rtx)uax . T
a a a ]

0 and

In view of the boundary conditions in (1.4.b), we know u(b)

u'(a)u(a) > 0 .

o b b b
B [ u'?ax + [ Flx,ululax < A [ rix)uax . (1.60)
a

a a

By assumptions (F.2) and (r.1), this leads to
b b

oq+2
[ wqlu] T ax < Ary, wlax .
a a

=2/(a1+2)
as the product of wy an :

X
‘ Next, writing u?

; o1+2)2/(o1+2)

i (m1lu' and applying H81lder's inequality, we obtain

01+2)2/(O'1+2) (1.62) -y

. b /(a4+2)
g g
> f w2 < ¢ 1 1

b
(f m1|u|

a

b -2/
vhere ¢ = [ wy  'dx. Combining this with (1.61) yields
a

-
- W

b b §
04/{0¢+2) 2/(o4%2) y
[ w¥axce VTV ar, [ owlaa” YT i

= a a

LS

: Consequently, we get .
’ 4
b - 2/04 P =2/¢ 3
4 [ wlax ¢ Or) V[ w, lax . (1.63) b

again we have

Going back to (1.60) and applying the assumption (r.1)

b b
f u'2dx < Ary | u2dx .
a a
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i . Thus, with the help of (1.63), this Zmplies y
b (2409)/0y P -2/ §
[ u'2dx < (Ar,) 1 [ w Tax . &
2 1 A
a . a .
\ -
Likewise, the same proof shows that if u is a negative solution {
)
X of (I)a.b then
: '<
b b Wl
¥ 2/0 -2/q ‘
! [ u?ax < (Ary) 2 [ vy 2ax N
a a ]
X and A
!
. b b w)
8 2 (2+03) /03 =2/0y Y
; [ w'fax < (iry) [ wy fax . ",
a a E)
f To obtain estimates (1.58.a) and (1.58.b) for solutions in an ,:
b ) 3
arbitrary nodal class, we assume u has interior zeroes at o
1 . '
) ZqsZgseeesZp, @ > 1. The restriction of u to each interval of v
] o
;' la,z.]1,02z4,23)s000,[2y,b] 1is either positive or negative. Hence W
J \
o (1.58.a) and (1.58.b) hold for u on each interval with the X
i .
) corresponding end-points. Summing up these estimates completes the v
proof of (1.58.a) and (1.58.b).
, ]
\ To prove (1.58.c), it is easy to see that h
. b
. w?(x) = - [ 2uu'at
] X <
for x ¢ {a,b]. Applying Schwartz inequality, we obtain 4
b b
k)
| o ¥ < 2 w2ae)V2(f u'2ar)1/2 5
1 x X
! b b :
X < 2(f wZan)V/2(f w'lan)V2. :
v a a
4 .
A This together with (1.58.a) and (1.58.b) leads to (1.58.c). by
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Finally, we need the following lemma to prove (1.58.4).

Lemma 1.64

Suppose (r.1) and (F.1) are satisfied. Let X > 0 and

solution of (I)a,b {resp. (I)a) then

fu't < /krz ful (resp. u't _
L (a,b] L {a,b] L [a,»)
< /Arz fur ) .
L [a,=)
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u be a

(1.65)

Assuming the lemma, (1.58.d) easily follows from (1.5S8.c). Now,

we prove the lemma.

Proof

If u=0, (1.65) is clearly satisfied. To consider nontrivial

solutions we put R(x) = A(rp + §lu(x) + u'2(x) with § > 0. Then

it follows, with the aid of equation (1.1.a) that

R'(x) = 2[F(x,ul(x)) + A(ry + § = r(x))]ulx)u'(x) .

From the assumption (F.1), we know F(x,u(x)} > 0. Also note that

r, + § = r(x) > 0. Thus R'(x) has the same sign as that of

ﬁ(x)u'(x).

Since it is easy to see that if u(t) = 0 there exists an ¢ > 0

such that
u(xsu'(x) >0 for t<x<t+e,
u(x)u'(x) <0 for t-eg<x <t
and hence
R'(x) >0 for t<x<t+¢e,

R'(x) ¢ 0 for t=-ec<x<¢t.
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ﬁ_ .
' - Therefore R cannot attain its maximum at interior zerces of u as
?
: well as at b in the case of (I), ,.
. ,
W “
h‘ : At the point a, if 6 =0 4i.e. u(a) = 0 the same reasoning
& .
as above shows R{a) is not a maximum of R(x) either. Next, for
i
\
v
#‘ 0 <O < %v u'(a) arnd u(a) have the same sign. Thus, R'(a) > 0
[
% which again implies R(a) is not a maximum of R(x). Finally, in the
L)
case of (I)a, it follows from Lemma 1.7 that
4‘l
o lim R(x) = 0 .
: X»>
i
! However, R(a) = A(ry + G)uz(a) + u'z(a) > 0. Thus in all cases
e, a Jus
ip ((I)a,b and (I)a, all fix=d 9, 0 € 9 ¢ 2) we conclude that R must
0
3‘ attain its maximum at a point t at which R'(t) = 0 and u'(t) = 0.
K)
g Therefore
i ‘l — _ - Syt ——
i |u'|L, < l/RlL“ = /R(t) = /Alz,+8) |ult)] < /A(r2+6)nunnm . (1.66)
i
)
E Since (1.66) holds for every & > 0, we get (1.65).
; Proof of Theorem 1.2
L)
L’ Let bn =& +n and uy, = Vilreoa,bp,8,¢), n = 1,2,3,400 « Put
¢ = Kj(A,a) + Ky(A,a). Then, for n > 1, Lemma 1.57 implies
: 'un'c1[a b ] € C . (1067)
- ““n
f Let c¢4y(n) = Max If(x,y)l, it follows from equation (1.1.a) that
v xe[a.bn] |
X ye(0,c]
\ .
: lu;.l - < szc + C’(n) (1068’
: L (a,b ] !
i' )
s n .
-\ v
for all ¢ > n.
)
"\
J
::o
!
§

l"'xvv
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The bounds (1.67) and (1.68), the Arzela-Ascoli theorem and
(1.1.a} imply that there exists a subsequence {unk} and a
u ¢ c?la,=) such that
2
u, uniformly on compact subsets of {a,») . (1.69)

o 3
Also, note that wu,(a)cosd - uj(a)sing = 0 for all n. This implies
u(a)cosf -~ u'(a)sind = 0. The "monotonicity" result (1.46) tells us
un+1(x) > u,(x) for x ¢ [a,bn]. Hence u{x) > 0 for x ¢ (a,»).
To show u ¢ H’[a.w) put
unk(x) if a < x < bnk

vk(x) =
Q if x> bnk .

Pick an M > 0, by Lemma 1.57; we have
M 2 2 2 2
[ v + vpSdx < KP + K5
a

for all k. Invoking (1.69) we get
M
[ u?+u'?ax < K2+ K3 . (1.70)
a

Since (1.70) is true for all M > a, we conclude u ¢ E‘[a.n).

Remark 1.71

The "monotonicity” result (1.46) indicates that not only a
subsequence {u2 } but the whole sequence {“2} converges to u.
k

Corollary 1.72

Assume (r.1), (F.1) and (F.2) are satisfied. If u 4is a

solution of (I)a then
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R .
B
& . :
.- .u. 2 < x1(xla) ’ (1:73-3)
:A L (a,»)
o "
L ', < Ky(h.a) , (1.73.b)
b ) ) L [a,=) ’
v \
ot < Ky(r.a) , (1.73.¢)
L [a,”) .
'y < Kg(x,a) . (1.73.d)
L [ac“)
Proof
W )

From Lemma 1.7 we know

s 1im u(x) = 0
X+

: lim u'(x) = 0 .
xX+r®

With this replacing the boundary condition u(b) = 0, the rest of the

proof can be easily carried out by the same arqument as in Lemma 1.57.

o AN

We omit it. .
Remark 1.74

» (a) 1In the proof of Corollary 1.72, the solution u may have
infinitely many zeroes in (a,=). However, this does not affect
in the proof and implies that any solution of equation (1.1.a)

satisfying the boundary conditicns u(a)ces® - u'(a)sing = 0,

LR B W by

0< 98 < %7 and having infinitely many zerces, automatically

belongs 12[a,=), provided that (r.1), (F.1), (F.2) are assumed.

(b) An example of solutions having infinitely many zeroes was given

3 by Heinz (8], where he also gave a sufficient condition which

prohibits the existence of such solutions.
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A
: k+o
a‘ and

2 lim ui..()\k,ak,bk:X) = 0

o ko

4
L
i uniformly for x ¢ {a,b].
A (11) 1If either b < += and A > uq(a,b) or b = += then
1
N lim ut(kk,ak,bk.X) = ut(xlalblx)
L kso
._,' and
- lim u;(xk.ak,bk.x) = ui(i,a,b,x)
] : k+o

'
M
1}

u{
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(c) X;(r,a), 1< i <4, are continuous functions of a and 2.
For fixed a > 0
.' .  limK;(2,a) =0. (1.75.a)
A+0
If XA > 0 is fixed, then
=0 . (1.75.b)

1lim Ki()ua) =

ar>e
Before completing this section we are going to discuss the

continuous dependence of positive ard negative solutions on parameters

and domains.

Provosition 1.76

Assume (r.1), (F.1), (F.2), (F.3) and (F.4) are satisfied. Let

D <8< be fixed. Let A >0, 0<a<bc+s and {(AaygDy)}

be a sequence such that 1im (X, ,a),by) = (i,a,b), where by could
ko o

be +o if b = 4,
(1) If b < += and X < u4q(a,b) then

1im ut(lk:ak;bklx) =0
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as

for x ¢ (a,b] or ({a,») in case that b = +» and uniformly
on compact subsets of (a,b).

“

Proof .

We only need to prove uniform convergence on compact subsets by
which, together with the Cz-smoothness of the solutions, the
convergence at the end points follows.

Let vy = Vi {Ag,ax.bg,*). Then arguments analogous to those of
Theorem 1.2 show that by passing to a subseguence if necessary, there

is a function v(x)

1
Vi < v uniformly on compact subsets of (a.,b}

and v(x) is a solution of (I)a,b‘ Hence, by Proposition 1.43 (i)
v must be the trivial solution. Since every subsequence of {vk}
does so. We complete the proof of (i).

To prove (ii). Let wp be defined as above and the same
argument gives v(x). Since v(x) » 0 by Theorem 1.5, we complete
(1i) provided that v 1is not the trivial sclution.

To show that v cannot be the trivial solution, we first treat

the case b < +=, X > pq(a,b). Suppose v is the trivial solution

then
Ivkl 1 + 0 for any compact subsets {a,B] of (a,b) . (1.77)
c [a,B]
v
Put y, = where Rl = Qo) then Iy 1 = 1,
v, 1 1 k™ 1
k [ o] [ﬂk'bk] [+ [ak'bk]

Thus the same arqument as above shows that by passing to a subsequence

= 1

if necessary, there is a function y(x) such that 1yl 1
c [a,b]

and
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c’
Yk T Y uniformly on compact subsets of (a,b) . (1.78)
From {1.77), (1.78), (1.4) and the assumption (F.3), we know that
(A, ¥(x)) is a solution of (1.40). Since y » 0 and ny“;'[a,b] = 1,
y(x) > 0 for x ¢ (a,b). Thus ) = pq(a,b) which is contrary to the
assumption A > pq(a,b).
Next, in case that b = +», we can pick a By < e such that,
from (1.41.d4), X > uq(2,B4). By (1.46) and the result we proved

above, v cannot be the trivial solution.
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§2. EXISTENCE OF SOLUTIONS WITH A PRESCRIBED NUMBER OF NODES WHEN THE
NONLINEARITY IS ODD
Now we turn to the questions of solutions with nodes. Let
A>0, a>0, 0<8 < %- and n » 1 be an integer. Let S;'n(x,e)
(resp. S;’n(l.e)) denote the set of u ¢ C2[a,w) N H’{a,w) such
that u satisfies (1.1.a) and the boundary condition wul(a)ccsd -
u'{a)sing = 0, u > 0 (resp. < 0) in a deleted neighborhood of
x = a, u has exactly n - 1 simple zeroes in (a,~). We will show

the existence of solutions in each nodal class sj n(A.e). We can now
,

state the main result of this section.

Theorem 2.1

Agssume {(r.1), (F.1)-(F.4) and
(F.5) F(x,~y) = F(x,y) for x ¢ [0,®), ¥y ¢ R
are satisfied. let A > 0, a >0 and 0 ¢ 9 ¢ %- be given, then
s;,n(x.e) and s;'nte) are nonempty for all n ¢ N.
Remark 2.2

The existence of nodal solutions has been obtained in [4] and
[6]-{8). However, we generalize the result in several directions as
mentioned in Remark 1.3.

To prove the theorem, we will generalize a result of Hempel for
bounded intervals (Proposition 2.4, also see [17) or [18]) to the
unbounded case and use it to find solutions with a prescribed number

of nodes when 9 = 0, Starting from a solution belonging to

s:’n(A,O). those "monotonicity” properties, which were developed in

37

2a® Rl oW aad goe fu® fa. g
A a U W g Wl Wy Ny

. AN,

I T

C o s e ¢ v -

G




SUGTALLVAT S AT i)
i

At tat Sal el Sl il sl il Ak s vl bod ek SlLtul b P i S A e A Aok o3 o' SHEST

i 38
o~
Tn :
the previous section, allow us to set up an iteration scheme to
N
; construct a solution with n - 1 nodes in the case 0 < § %3
~ .
b Let us assume (r.1), (F.1), (F.3) and (F.4). Also, for 0 < a <
' b < +», we assume V,(i,a,b,0,+) (resp. V_{(A,a,b,0,+)) exists
%: whenever )\ > U1(a,b,0). Define the number A%*{a,b] {resp. AT [a,b])
1%
- by
N
b
v A*la,b] (resp. AT[a,bl) = [ [Ar(x)u?(x) - (u'(x))?
., a
K u(x)
_&: -2 f(x,y)dylax (2.3.a)
» 0
- where
.
o u= (2.3.b)
y V+()«,a,b,0,°) (resp. V_) if x> u1(a,b,0) .
‘jj To make the notation clear, let us recall that Vt and yq were
v,
j’ defined as in Remark 1.6 and in (1.41) respectively. From Theorem
O3
- 1.5, we know A%[a,b] are well-defined. If F(x,y) satisfies (F.5),
oY
i: then A*la,b) = A”[a,b] Gue to the fact that Ve = ~V_, and we
-
N simply use the notation Ala,b}. Also, for convenience, we adapt the
).‘ o
: notation Vi(x,a,b,o,x) z 0 whenever A < u4q(a,b,0).
S Proposition 2.4 (Hempel [17])
- Assume (r.1), (F.1), (F.3), (F.4) and (F.5) are satisfied.
; Suppose u =V, (),a,b,0,¢) exists if A > p,(a,b,0). Then
‘\." .
. Afla,b] 1is a differentiable function of a and b with derivatives
ﬂ
'
~ given by
<
A ' 2
- = ~(y'(a (2.5.a)
A 3a (u'(a))
)
?
' A}

.— b‘
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and

A imy2 . '
3 = (0’ (B) (2.5.b)

Remark 2.6
Hemple actually imposed the stronger assumption
(F.4)' There exists a € > 0 such that for fixed x > 0, y €F(x,y)
is a nondecreasing function of y if y > 0 and a
nonincreasing function of y if ¢ < O
instead of (F.4). However, in view of his proof, (F.4) would be
sufficient provided that V,{\,a,b,0,+) exists whenever
A > yq(a,b,0). Also, it is worthwhile to mention that (F.4)' insures

the existence of UV, due to Proposition 1.43 and Remark 1.44.

Corollary 2.7

Assume (r.1), {(F.1), (F.3), (F.4) are satisfied. Suppose

Ve, = V,(r,a,b,0,¢) (resp. V_.) exists if A > yq(a,b,0). Then

A*[a,b] (resp. A~ [a,b]) is a differentiable functioﬁ of a and b,

with derivatives given by

+ -
A _ oy 2 A L rraa2
3a (Vica)) (resp. 3a (Vi(a)}*) (2.8.2)
and
___....aA- = L) A 2 '—-—'~3A° = * 2 - 208-b
b (VieN* (resp. o (Vi(b))*) ( )
Proof

Since their proofs are the same only the first proof will be

carried out. Let
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(F(x,y) if y > ¢
B(XIY) = '
F(x,-y) if y< 0. ‘
Then V,(},a,b,0,+) 1is also the positive solution of
-u®" = (Ar({x) ~ H{x,u))u
uvf(a) = u(b) =0
and hence the result easily follows from Proposition 2.4.

To generalize Hempel's result to the case of an unbounded
irterval, we assume (r.1), (F.1), (F.2), (F.3) and (F.4) and define
A*(a,=] (resp. AT[a,=]) by

A*(a,=] (resp. AT[a,=])
® 5 9 u(x)
= [ [Ar(x)uf(x) - (u'(x))* -2 [ £(x,y)dyldx (2.9)
a 0
where u = V,(i,a,b,0,¢) (resp. UV_) and again we simply use the
notation Ala,»] whenever (F.5) is satisfied. To justify the (2.9)

is well-defined we show

Proposition 2.10

Suppose (r.1), (F.1)-(F.4) are satisfied then
. 0 < Affa,=] < += .
To prove the proposition, we need a few lemmas.

Lemma 2.11

Suppose (r.1), (F.1)-(F.4) are satisfied. Let 1 > 0 and a > 0
be fixed then At[a.b] are nondecreasing functions of b. Moreover
(1) A%fa,b) =0 4if X < uy(a,b,0) and

(11) A¥[a,b] >0 if A > uqla,b,0) .
1
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Proof
From (2.3.b), A*{a,b] =0 if A < ys(a,b). applying Corollary

2.7, w;'complete the proof.

Lemma 2.12

Suppose (r.1), (F.1), (F.3) and (F.4) are satisfied. Let u be
a solution of (I)a then
® u{x)
{f f(x,y)dydx < += .
00
Proof

Multiplying equation (1.1.a) by u and integrating by parts, we

obtain
b b b
f Ar(x)uzdx - f f(x,a)udx = u'(a)ufa) - u'(b)u(b) + j u'2ax .
a a

Since 0 < § < %- it follows from (1.1.b) that u'(a)u(a) > 0 and

hence
b b b
[ £(x,u)udx < [ Ar(x)udx = [ u'Zax + u'(blu(b) .
a a a
By Lemma 1.7, u ¢ B1Ia,o) and u'(b)u(b) + 0 as b + +». Thus,

there exists a constant C (independent of b) such that

b
f £(x.,u)udx < C .

Letting b + », we get

[ f(x,u{x))u(x)dx < C .

By the assumption (F.4), f(x,y) is increasing in y if y > 0 and
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decreasing in y if y < 0. Hence

o u{x) )
/ £(x,y)dydx < [ f(x,u(x)lu(x)dx < C .

ao . a
Lesma 2.13
Assume (r.1), (F.1)=-{F.4) are satisfied, then

1im A¥{a,b] = At(a,=] .

b
Proof
Let u=V_(),a,»,0,°). From the proof of Theorem 1.2 and Remark
1.71, any sequence {uy} with u, = V+(A,a,bk,0,-) and by + += has
the property that

1
uy <L, uniformly on compact subintervals of [a,=) . (2.14)

Multiplying (1.1.a) by u, and integrating by parts, we get

Py by
[ uplat + [ F(r,mumat = wgelbgug(by)
X X

b
- uk(x)ui(x) + A [ r(t)uidt .
a

Since “k(bk) =0 and F > 0 this leads to

by Py
[ upat ¢ - uplxdug(x) + A [ r(t)udae . (2. 15)
X X

"From (1.46), we know for x ¢ [a,b,] that
uk(x) < u(x) .
By Lemma 1.57

't < Kg(),a) .
“x L’(a,bkl
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Since 1lim u(x) = 0. Given e > 0, there exists an s > a such that
x>0
if x> s
o x| < e (2. 16)
uniformly in k. Also, note that (1.46) and (r.1) imply
bk -
) lr(t)uﬁdt < Arp | uldt .
x x
Since u ¢ H’[a,w) we have, for large x, that
by
[ axttiufat < e . (2.17)
x
Since (2.16) and (2.17) hold uniformly in k, by (2.15)},
by
[ uplat < 2 (2.18)
x .
uniformly in k for large x. Hence (2.14), (2.17) and (2.18) imply
bk -
m [ ar(oudar = [ ar(eu?at
k+o a a
and
bk -
lim | uizdt = [ u'2at .
k*» a a
Thus it remains to prove
bk'uk(t) = u(t)
lm [ | £(t,y)dydt = [ | £(t,y)dydt . (2.19)
kso a 0 ao
From (1.46) and (F.4) we know
bk uk(t) - u(t)
| | £(t,y)ayat < [ £(t,y)dydt .
x O x 0
Given ¢ > 0, by Lemma 2.12, there exists an 84 > a such that if
T g e P NN = = N PN N NN AR N A N

-

-

"

AN I

» -

= A E B ¥ ¥ _R_w
K. 2 L

T o 8 e

-

-
-

v SR DU NG 38 3N ]

RPN

Fors

SN



EPTRPTIETICY . o ;
LR M 92 0% A% AL, Y, 0 g Wl A A B e kA ¥ A e "
() 4 WUV B R L RE Pl Ve b Sl R v R a0 0 8 e" S0 07 Ve g Ul ma o R uig bt bt et et Rat G0 b g b TR TR,

* - A <

-
P

W
)
X
44 (]
¢
1 :‘F
x 3 s, A
¥
o u(t) ‘ :ﬂ
I £(t,y)dydt < ¢ . v
. x 0 Q'
o
Hence, if x » s, 2t
: bk uk(t) ’ r
{ f f(t,y)dydt < ¢
x 0 T
P,
uniform in k. Since (2.14) implies "
y 51 u(t) 84 u (t) v
1/ f(t,y)dyat - [ | £(t,y)dydt]| < ¢ ¢,
a 0 a o .
Q)
for large k. Therefore (2.19) follows from the standard 3¢ ©
argument. f
Proof of Proposition 2.10 é
. (x]
: O
From (1.41.3), we can pick a b > a such that A > u4(a,b,0) )
N1
and hence, by lLemma 2.11, At[a,b] > 0 and At[a,b1] > 0 for all o
Pt
~
- by > b. Therefore, by Lemma 2.13, A%(a,=] > 0. R
The assertion At[a,c] < +o= follows from (2.9). Theorem 1.2 and )
; A
h Lemma 2.12. :
’ . -
P
Now, we have an analogue of Hempel's result. <
v

Proposition 2.20

Suppose (r.1), (F.1)-(F.4) are satisfied. Then A+[a,w] (resp.

A T
oL

A"[a,»]) is a differentiable function of a and 3
an’ an” 2 \

. Erm—— . — = - ' 2.21
1 . 2a (resp aa ) (u'(a)) ( ) 3
y ’
where u = V (),a,»,0,+) (resp. V_). -
N
X g
N
)
\
t l' t
) .
\
-
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Since their proofs are the same, only the case Atla,»] will be

carried out. Llet {b,} C (a,=) be an increasing sequence such that "

lim bn = +» and put
n+o

¢n(x) = A+[x'bn} for X € [0,b1] .

R s
’ d

Clearly, by (2.8.a),

oa(x) = =(V1(A,x,by,0,x))2

-

Kt A

and from Proposition 1.76, ?ﬁ are continuous on [o,b1]- It follows

from (1.47) that

ealx) > gp4q(x) (2.22.a)

Al
&

for n=1,2,3,... and for every X ¢ [0,b1]. Let

n d» o

P(x) = -(V;(A,x,w,o,x))z. By Proposition 1.76, ¢ is continuous and

- : 111 gl (x) = P(x) . (2.22.b)
nyo

A

It follows from Dini Theorem ({26], Chap. 7), with the aid of (2.22.a)

and (2.22.b), that

op * ¥ uniformly on [0,bq] - {2.22.¢c)

Put ¢(x) = A+[x.w]. Then an elementary theorem in Calculus ([26], J

Chap. 7) together with Lemma 2.13 and (2.22.c) implies

¢n * ¢ uniformly on [0,bq] "

(2.22.4)

@'(x) = 1lim @p(x) = Y(x) .
nro

In particular, taking x = a, (2.22.d) gives (2.21).

We continue with the preliminary work needed for the proof of

Theorem 2.1.
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Lemma 2.23
Asspme {r.1), (F.1)=(F.5) are satisfied.
Le£ A>0 and 08 <a<bc<+= be fixeds If ¢ ¢ (a,b) then
we have
Ala,c} + Ale,b} < Ala,b] . (2.24)
Moreover, if X > u1(a,c,0) or A > u1(c,b,0) inequality (2.27) is
strict.

Proof

Since 8 = 0 we suppress 6 from the notations, i.e. pq¢(c.B) =
uq(a,B8,0) and VilAr,a,8,x) = V4(X,a,B8,0,x). Also, for convenience we
adapt the notation that V_(A,a,8,x) = 0 when 1A < yq(a,8).

If A < pqla,b), by (2.3.b), Ala,c] = Ale,b] = Ala,b] = 0.
Hence (2.24) trivially hold. |

If only one of the inequalities A < pq(a,c), A < yg(c,b) is

0. Hence it

satisfied, say ) < yy(a,c), then by (2.3.b), Ala,c)

follows from (2.5.a) if b < +» and from (2.21) if b = 4= that
b
Ale,b] = [ (VL(h,x,b,x))2dx

c
c b

< I (VL(X.x,b,x))zdx + f (U.:.(Xlx:pr) )2dx
a c
b .

= I (V_:_(K.X.b.x))zdx
a

= Ala,b] .

Likewise Afa,c] < Afa,b] 4if X < uq(c,b).

In the remaining case, both Ala,c] and Afe,b] are nonzero.

Again by (2.5.a) when b < +» and by (2.21) when b = +», we obtain
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a Ala,b] = Ale,b] = [ (V2(A,x,b,x))2ax (2.25)
0 a |
o
5 and
o v
c
- Masel = [ Wir.x,c,x))%ax . .
a
¥ K
.(
i From (2.3.b), we know VI(A,x,c,x) =0 4if A < uq{x,c). Hence there J
is an € > 0 such that Ul(A,x,c,x) = 0 whenever x ¢ [c - g,c] and ‘
3
'
;, consequently we have !
\ i
k) N
) c-¢ :
" Ma,el = [ (Vl(A,x,e,x))%ax . (2.26) i
v a
2 From (1.47), we know, for x ¢ [a,c =~ ¢) }
ot v
! (VIa,x.5,x))2 > (Vi(hx,c.x))? . (2.27)
) Combining (2.25), (2.26) and (2.27), we conclude that
o ’ *
. )
: Afla,c] + Alc,b]l < Ala,b] . ;
) i
) Corollary 2.28 *
¥
Agsume (r.1), (F.1)-(F.5) are satisfied. Then
\ 1im Ala,®] = 0 . (2.29) y
: | are |
Proof .
o
5 Let a » 0. By Lemma 2.11 and Lemma 2.23, we have ]
Yy 0 ¢ Ala,=) < Ala,=] =~ Ala,al 3
for all a < a ¢ +». Letting a + +» and invoking Lemma 2.13, we -
" obtain (2.29).
N
o' 4
"
! .
P, N
8
A )
i
- ]
4
'
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Remark 2.30
Without assuming (F.5) the same kind of technique used in the
proof of Corollary 2.7 shows that
1im A*{a,=] =0 .
a+o
We are first going to prove Theorem 2.1 for the special case of
O = 0. For fixed A > 0 and a > 0, we denote the function G1(x)
by
Gq(x) = Ala,x] + Alx,=)] (2.31)
for x ¢ [a,») and define Gj(+») = 1lim G4(x).
K>+
The function G, has the following properties.
Lemma 2.32
Suppose (r.1), (F.1)-(F.5) are satisfied. Then G, is
continuously differentiable on [a,») such that
G1(+°) = Afa,=] (2.33)
and
Gi(x) = [V1(ha,x,0,x)1% = (V1 (A,x,=,0,x)12 . (2.34)
Proof

G1 € C’[a,w) is an immediate consequence of Propositions 2.4,
2.20 and (2.31). ¥Yext, by Lemma 2.13 and Corollary 2.28, we have
(2.33). Finally (2.34) follows from (2.5.b) and (2.21).

We are now able to find a one~-node soluticon for 9§ =0 in

(1.1.b). From now on until the end of Remark 2.51, we suppress the

0 dependence in our notation.
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, - Theorem 2.35

g Suppose (r.1), (F.1)-(F.5) are satisfied. Ilet X > 0, a > 0 be E
; ;
i given and 8 = 0 in (1.1.D) be fixed. Then S;'Z(X) and S;‘z(k) K,
| are nonempty. e
{ N
D Proof ]
: By (1.41.c), there is an ¢ > 0 such that 1 < pq(a,x) for x e §
) {a,a + €]. Hence, by Lemma 2.11 (i) and (2.31), G4(3) = Ala,»]. From ’
:, Proposition 1.43 (i) and (2.34) we know GY(x) = =[Vi(A,x,=,x)1% < 0 .5
! "

for x ¢ [a,a + €]. Furthermore, by (2.33), Gq(+=) = Ala,=]. We

conclude that G¢ must attain its infimum at some point _
)

z e (a +g,»), \
|

i~ Next, we define !

: Vor,a,z,x), x ¢ la,z] v
u(x) = (2.36) i

Voir,z,2,x), x € [2,2) . 3

E We claim u ¢ C'[a.u). Obviously, . :!
S utz) =V, (r,a,z,z) = V_(A,2z,>,2) =0 . -4
( Since G'(z) = 0, by (2.34) and V, = =V_, we have 3
1im u'(x) = Vi(r,a,z,z) = Vi(X,z,=,2) = lim u’(x) . 'h

x+z xsz' ;i

; Finally, it can be easily checked that u(x) satisfies (I),- ib
Thus u ¢ S;'Z(X) and hence -u ¢ S; 5(1). :%

- Remark 2.37 i.
K The proof shows that, for given a > 0, G; attains its minimum Ef
' at an interior point of (a,=). ?
K To obtain n-node solutions, more work is needed. let a > 0, )
E then for n ¢ B we denote the set A, by ?j
y !
3 :
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A, = {(x,,xz,...,xn)la < xq € xXg € oee < x, < 4=} .

Next, put Xg = a and Xn41 = o Then, for fixed A > O, we define

the function G, on An by

n+1
G (XqsXgseaerxy) = 121 Alxg_q,%5] o (2.38)

Lemma 2.39

Assume (r.1), (F.1)-(F.5) are satisfied. Then Gn is

continuously differentiable on An and

aG
n
3;: (x11x20-'°:xn) = [V;(X'xi-1lxilolxi)]2
- TVIOXg %440 00%012 (2.40)
Proof
It immediately follows from Propositions 2.4, 2.20 and (2.38).
Lemma 2.41

Assume (r.1), (F.1)~(F.5) are satisfied. Let n > 1, then

(1)
(11)

(1i1)

lim

me>oe

'- .- ."J.' v,'-l“."'.".--.’-’ .."._'-"a"\‘. e

If X1 = a, Gn(x1,x2,...,xn) = G _1(x2,-.-,xn)u

If xi = xi+1, Gn(x1,x2, -..,xn) =G _1(x2,...,xi,xi_,_z,...,xn).
If {(xq(m),x3(m),...,x (m))} C A, 1is a sequerce such that

1im xi(m) =2y ¢ 4o for 0<i<k

mrm
and
lim x;(m) = +=» for k < i < n.
m+e
Then

Gk-1(z"22"."zk-1) if k > 1

Gplxq(m),xa(m),eee,xp(m)) =
Ala, =] if k= 1.
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Proof

By (1.41.¢c) and Lemma 2.11 (i), we have Alx,x] = 0 for
x € {a,°). This together with (2.38) implies (i) and (ii). To prove
{ii1) we know that Proposition 2.4 implies
k-1 k-1
im § Alxjoq(m),xg(m)] = ] Alzg_q.24]
m+o i=1 i=1

wnere zg = xo(m) = a. Next, by Proposition 2.4 and Lemma 2.13

1im Alxy_q(m),xp(m)] = Alxg.q, =]

myco

Thus, letting x,,4(m) = +=, it remains to prove

n+1
im  }  Alxg_q(m),xg(m)] = 0 . (2.42)
m+o i=k+1

From Lemmas 2.11 and 2.23, it is easy to see that for all me¢ §
n+1
0 < §  Alxjoq(m),xg(m)] < Alxg_q(m),=] (2.43)
i=k+1
Letting m + +=, (2.42) follows from (2.43) and (2.29).
We are now ready to establish n-node sclutions for n > 2 1in the

case 0 = 0.

Theorem 2.44

Suppose (r.1), (F.1)=-(F.5) are satisfiede Let A > 0 and
a >0 be given, then S;'n(X,O) and S;'n(A.O) are nonempty for
all n € N.

Proof

For convenience, we suppress the 0 dependence from the
notation V,. Since Alxj_q,x;] > 0 and at least one of them is

positive, we know
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Gk(x1,x2,...,xk) > 0 for all (x1,x2,...,xk) <€ Ak

and hence Inf Gk(x1,x2,...,xk) exists.

By an interior point of Ak, we mean a point (Xq,X3,¢e0¢,X) €
Ry such that a < xg € xp < eee < xi < 4= We will show G, attains
its global infimum at an interior point (z1,z2,...,zk) of Ayp.
= 4o, from

Assuming that for now and letting zg = a and 2zp44

(2.40), we have, for i = 1,2,...,k, that

3G
k
3;: (Z1s2000042K) = [V;(A,zi_1,zi,zi)]2 - [V;(A,zi,zi+1,zi)]2 =0
that is
[ViCA,zy_qezgrzi) | = (VIR 25025410250 |0 & = 12,0000k & (2.45)

Also, note that if X < u1(zj_1,zj) for some j, 1let ¢ » j be the

largest value such that A < u,(z£_1,z£) and A > yuqlzg,zg4qi- But
this implies V;(x,zl_1,zl,z£) =0 and U;(A,zi,z1,1,zz) # 0 which
contradicts (2.45). Thus A > uqlzj_q,2z3) for i = 1,2,...,k + 1,
and if we put

u(x) = (-1)1V+(x,zi,zi+1,x) for x € [Z3,2541) «
i =0,1,2,...,k, then u ¢ C'{a,») is the desired k-node solution
with nodes zq,zZg,«¢+,2x-

Thus it remains to show that Gy attains its infimum at an

interior point (z1,zz,...,zk) of Ax. To achieve this goal it is
sufficient to prove, by induction, the following statement:
If, for 1 <k <n-=1,
Gy attains its global minimum at an interior point of Ay {2.46.a)

and
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Min Gk(x1’x2'...'xk) > Inf Gk+1(X1IX2,--o,Xk+1) (2046.b)

+1 '
then these statements also hold fo; k = n.

It is clear, ftom\Rema:k 2.37, that (2.4€.a) holds for k = 1.
Also, if G4 attains its global minimum at z ¢ (a,»), then from
Lemma 2.23 there exists a t ¢ (2,%) such that

Alz,t] + Alt,=] < Alz,]
hence

Min G1(x) = G1(Z) = Ala,z] + Alz,=]
A
1
> Ala,z] + Alz,t] + Alt,]

R
which gives (2.46.b) for k = 1.
Next, if (2.46.a) and (2.46.b) hold for 1 < k < n - 1 and

suppose (2.46.a) is false for k = n, then there exists a segquence

{(51(m)r82(m),--o,sn(m))} C A, such that

lim S;(m) = t; (might be +=) 1<i<n (2.47)
m+e
and
I:lf Gn(X1,xz,.oo'xn) - lim Gn(S1(m),Sz(m),...,Sn(m)) - (2.48)
m+e

A
n
Suppose t, < +=. Then, letting t3 = a, there exists 0 < j < n -1
such that
Hence, by Lemma 2.41 (i) or (ii)., we have
Gn(t1't2,.-a,tn) = Gn_1(t"ooo,tj_1;tj+1,-o.,tn) . (2.49)

From Lemma 2.39, (2.47) and tn < +», we know
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lim Gn(S1(m),52(m),...,Sn(m)) = Gn(t1,t2,o-o,tn) . (2050)
myo

Applying the induction hypothesis and combining (2.48)-(2.50), this

\

leads to
I:f Gn < AMin Gn-‘l = AInf Gn_1 < G -1(t1’.“,tj-1'tj+1,.0.’tn)
n n=-1 n-1

= Gn(t1't2""'tn) = 1im Gn(S1(m),-.-,Sn(m)) = Inf Gn

m+o A
n

which is obviously absurd. If t, = +=. let 0 < j<n-1 be the
largest value such that ty < +=. Suppose j > 0. By Lemma 2.41
(iii) we have

1im Gm(S«'(m),-.o,Sn(m)) = Gj(t1,~-O,tj) .
m-+>oo

Applying the induction hypothesis, we obtain the same sort of
contradiction. Thus it remains the case j = 0. In this case, by
lemma 2.41 (iii)

lim G (Sq(m),...,Sp(m)) = Ala,=] .
m+oo

From Lemma 2.23, there exists a 2z ¢ (a,») such that

Ala,=] > Ala,z] + Alz,=] = Gq(z) > Inf Gy .

A,
Thus,
Inf Gn = lim Gn(S1(m),...,Sn(m)) = Afa,»] > Inf G1 = Min Gy
An m+o : A1 A1

which is contrary to the induction hypothesis again.
Finally, arguing like the case k = 1, we can prove (2.46.b)

holds for kX = n and this completes the proof.
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Remark 2.51

(a)

(b;

Agtually any critical point of G, gives a n-node solution.
H&wever, if the n-node solution is unique (up to the sign) then
(z’,zz,...,zn) must be the point at which the minimum of G,
occurs where ZyrZgrererz, are nodes of the n-node solution.
For fixed A > 0 and a > 0, let T4 = Ala,»] and for n > 2,

Pn = Inf Gn-1' Then by (2.46)

An--1
(1) Ty >Ty > eee >T) > eee>0.
(1i) Ilet u be a solution of (I), and
o« 2 u(x)
Ju) = [ Ar(x)ud(x) - (u'(x))% -2 [ £(x,y)dydx .
a 0
If J(u) < rn then u has at least n interior zeroces
in (a,=).
Next, with the aid of Proposition 1.76, we know
(i1i) T, are continuous functions of ) and a..

Moreover, it is not difficult to prove, from Proposition 2.20,

Corollaries 1.17 and 1.45, that

(iv) For fixed a » 0, T, are increasing functions of X and

n

for fixed A > 0, 'L are decreasing functions of a.

n

To complete the proof of Theorem 2.1 for the case 0 < 6 < %- we

need the following technical lemma.

lemma 2.52

Agsgune (r.1) and (F.1)=-(F.4) are satisfied. let 0 ¢ xg < xq <

see € %, < %49+ Suppose x; .4 < +» (resp. = +=). Let T be a

function defined by
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+ if n {is odd
t(n) = (2.53)
- if n is even
and Vt(n)(k,a,b,e,-) be the positive or negative (depending on
t(n)) solution as mentioned in Remark 1.6 (b). For fixed 84,
n
0 <84« 5 Suppose A > uglxgexq,8¢9) and A > Max pg(x;,%x3541,0)
1<i<n
(resp. Max  uq(xi,%541,0)) where yuq(a,b,8) was defired as in
1<i<n-1
(1.39) and (1.40). Suppose for 2 < i < n
(V2 (1) oxsqexg 0x) | > [V 14y (huxgoxzeg 0ox) ] (2.54)
and
|V;(”(kaxoax1,91.x1)l ’ IV{.(Z)(A,xpxz,O,x')! . (2.55)
Then there exist to < t«' < t2 € oee < tn+1, to = xo, tn+1 = xn_”
such that
(11) [V Otort8p.td] = Vo)A, tq,t2,0,t9)] (2.57)
and for 2 < i< n
[Ve(i)yhitgoqets 0,6 | = (U3 (s41)(hititigq, 00t0) ] (2.58)
(114d) 'U%(j)(l:tortpapto), < ,V.'r(”(X:Xo,Xpepxo)'
i€ 84 =0 {2.59)
(iv) IV%(n+1)(X'tn'tn+1'°'tn+1)| > lV{(n+1)‘*'*n'xn+1'°fxn+1’|
if xp4q < ¥ _ (2.60)
(V) A D u,(to,t1.61) and A > Max u1(ti:ti+1ro) (resp-
1<i<n
Max He(ty,t549,.0)). (2.61)

1<i<n~1
Moreover, if <t(j) is replaced by t(j + 1) wherever +t(3j) appeared

in the above statement the results still hold.
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Remark 2.62

In view of the definiticn of <, if we define

VT(1)(A1tort1repx) fOl’ X € [t0't1) .
(2.63)

Ly

vix) =
Vr(i+1)“"ti'ti+1'°"‘) for x ¢ [ti’ti+1) 1<ign

and let a = to. b=+¢t,;q then v e s;’b'n+1(x,e) (resp.

.h i Iy el
) S;,n+1(l,8)) in the 1(j) case and Vv € S, p 41(X,8) (resp.

s;'n+1(x,e)) in the 1(j + 1) case.

Proof

Since 8, is considered fixed, we will suppress 64, as well as

0 from our notation when there is no confusion.

The proof will proceed by induction. We first look at the case

; n = 1. For given x5 and x,, we define functions p+ and p

with domain (x4,x,) by

K, pt(x) = [Vi(k;xolx.61,x)]2 - [V}_(A,x,xz,o,x)]2 (2.64) y

0

where, for convenience, we adapt the notation Vt(l.a,bve,x)

h whenever )\ < u,(a,b,e). Then it is clear, from Proposition 1.76, .

From the hypothesis

'; that p+ and p  are continuous on (xo,xz)o

(2.55), we know p+(x1) > 0. From (1.41.c) and Proposition 1.43 (i),

we know, for Xx near Xgo that

.P+(x) = -[V:(AIXIXZIx)lz <0. 3

N MY

Therefore, there is a t4 ¢ (xg,x4q] such that

M EE (2.65) 3

Letting tg = xg and t3 = X2 this yields (2.56). Combining (2.64)

Lo Nl R Bl

R I

with (2.65), we obtain (2.57).

' Supppose X, ¢ +e. Now t4 < xy and since ﬁ1(a,b.8) is a

decreasing function of b for a and 6 fixed, we have

.S - e e e e .
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A > pqlty,t,) and hence
[via,tqita it | > 00
Combining this inequality with (2.57), we have
'V;(X:to.tptﬂ' > 0 . (2.66)

If A < uql{tg,tq) the only solution for (I)to,t1 would be the trivial
solution which is contrary to (2.66). Thus X > wqltg,tq)} giving
(2.61) if x5 < 4=,

If x5 = 4=, IU;(A,t1,m,t1)’ > 0. Consegquently the same argument
as above shows A > pq(tg,tq). Thus we have (2.61} even if x5 = +w.
Equation (2.58) is void for n = 1. Inequalities {2.59) and
(2.60) easily follow from (2.56), (1.47) and (1.49). Thus, with an

analogous treatment of p (x) which corresponds to the <(j + 1)
case we conmplete the case of Q = 1.

Suppose the result holds for n = k - 1. We are going to prove
that it is true for n = k. Granted that (2.56)-(2.58) are true, we
can verify (2.59)~(2.61) by the same reasoning as in the case n = 1.
Thus, it remains to show (2.56)-(2.58).

First, by applying the induction hypothesis to k + 1 ordered
points (xg,xq,.--,%), we get k + 1 ordered points (30,51,...,sk)
with the corresponding (2.56)~(2.60) as follows

Bg ™ Xg, S = X and sj < x; for 1« ic<ck-=-1,
Vi) Orsiaresies) ] = IVigany usgisgeresp ]| 1< 4 ¢ k= 1(2.67)
,V{(i)(x,so,s1,so) < IV{(1)(A,x0,x1.XQ), ’
[V () Orsiatesiesid | > 1VE () A oxeagexicomid | (2.68)

From the hypothesis (2.54) and (2.68), we have

lV;‘k)(X,sk_,osk.sk)l ? lv;(k+1)(XoXklxk+1lxk)' . (2.69)
&
A
-
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. . ;
] - Put  Sp4q = Xppqe If equality occurs ir (2.69), we have the n = k *
s case. If (2.69) is not an equality, from (2.67) and (2.69), we can N
N apply ;he induction hypothesis to (SqsSg,«+«,Sk4q) and obtain é
: (s;,...,si+1) with the corresponding (2.56)-(2.60) as follows )
N 8] = Sqs Sg4q = Sksq and sl < s; for 2< i<k (2.70) X
Y .
o iy aesiogestesD] = Juliseny OuslislegesD] 2c i ¢k (2.71) :
@ [Vi2)(hisyesdos] < [VE(ay(A,sq,55,590] (2.72) .
? [Vieke1yOrostosterssian) ] > Vi) Osyosirriske | E
{ If xp4q € . (2.73) L
- Thus, it follows from the case i = 1 of (2.67) and (2.72), that .
! &
,is [Vi(2)(A,si,s3,sP)] < [Vicq)(Aisgrsqrsqd] - {2.74) :
33 Put s) = sg. Again if equality occurs in (2.74) we are finished;
; otherwise we repeat the same p;ocess on (s§,sy,+..,sg). Continuing .
? in this fashion, we define ordered k + 2 tuples of points, (x;], -
. (s3), (s]) etc. Either this process terminates in finjtely many f
R steps and hence we complete the proof or we have a sequence of k + 2 ]
:” ordered points {(T%(0),T™(1),...,T(k + 1))}, such that .
E ™(0) = ™ 1(0), ™k + 1) = ™ T(k + 1) and T + 1) < TR() :
- for 1< i<k and for all m , (2.75)
! Ve ey o™ o), 7™ e, o™ oon ] < vy, o™, o, ™ end ':
Vi 1V ety Ao T 100, 7™k + 1), 7™k + 1) 1
» > [V ey Q0T T+ 0,1 M+ D] 4E X0 < 3
and 1f m is odd ‘i
i W eay T™E = 1,2, TRED ] = [Vf (1) AT, + D, T .‘:
ko for 1¢1¢k =1 (2.76)
j and if m 1ia even '
p :

5 :
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gy T = D), TN = IVT'(‘“”(J\,'I‘“(:L),T'“(:L + 1, ™uNn|
for 2 <1< k. (2.77)
Since (2.75) tells us that for fixed 0 < i < k + 1, {T™(1)} are
monotone nonincreasing sequences and bounded below by Xg+ Thus

lim T™(i) = t; exists for 0 < i < k + 1

meeo
passing to the limit in (2.75)-(2.77), we get (2.56)-(2.58) for the
case n = k. The same argument takes care of the <t(j + 1)' case. We
omit it.

Completion of the proof of Theorem 2.1

‘--

Since positive and negative solutions have already been
constructed in Theorem 1.2, we only need to consider n » 2. Also,
the proof of the case of s;‘n(x,e) is the same as that of

n(A/8), so only the first one will be carried out.

By Theorem 2.44, we can pick a u ¢ s;,n(x,O). Let
XqeXgreee,Xpn_q be the nodes of u and put x5 = a, X q = =, then
it is clear that

ui{x) =y (i)(x,xi_1,xi,0,x) for x ¢ [%xj_9s%3]1+ 1¢ig¢<n.

By (1.37), we have, for 0 < 81 < that

2,
IeO,xg,xq,8 .90 ] > [V (A,xgsxq,0,x9)] « (2.79)
Since
fvia,xgrxq,0,%x9)]| = Julxy)] = [vetn,xqoxy,0,x4) ]
Combining this with (2.79) we get

PWitA xgexq009.x9) | > [VLOx90x2,0,x9)] © (2.80)
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N . Now, looking at V. (4)(h,xg,xq:8qc)s Vo (3)(ArxXj_1,%500,), 2 < i <1 i

‘o] and with the inequality (2.80), we satisfy the hypothesis of Lemma

k .

N

2.52 from which the required (n -~ 1)-node solution follows.

B Ry

.

by W

Ry

-

AN

)

S

CEEELEIL,

e
b
-

‘N

A % N ML Lt L L e ~ v
3 e b J‘ ‘. .Q. .Il ) ﬁ{.‘\ o "h \ A .,.Y_ \ 1 N —w ‘{‘-_n*\('. -..:_.--'_ *, -}“l.- \‘_.‘. L




§3. EXISTENCE OF SOLUTIONS WITH A PRESCRIBED NUMBER OF NODES WHEN THE

NONLINEARITY IS ODD ONLY NEAR ZERO

The goal of this section is to give an existence result for nodal
solutions of problem (I}, under weaker assumptions than earlier. From
Theorems 1.2 and 1.5, we already know that, for every ) > 0, there
exist a unique positive and a unique negative solution. However, we
have left open the gquestion of whether or unot there exist solutions
with nodes without assuming (F.S5). We will give an affirmative answer
here, provided F(x,y) 1is symmetric in a neighborhocod of
{x,y) = {(+=,0) in the xy-plane, that is,
(F.5)' There are positive numbers 6 and X such that

F(x,~y) = P(x,y) for x ¢ [X,») and Iyl < 6.

Thecrem 3.1

Assume (r.1), (F.1)=~(F.4) and (F.5)' are satisfied. Let ) > 0,
a>0 and 0< 6 < %- be given, then s;'n(x,a; and s;'n(x.e) are

nonempty for all n ¢ R.

Proof
Suppose u is a solution of (I),. By Corollary 1.72
ful - < K3(X,u) .
L [G"’)

From (1.75.b), we can find an a4 > X such that K3(i,ay) < 3§.
Hence u is a solution of (I)u, if and only if it is a solution of
the problem
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§
'

~u® = (Ar(x) = H{x,u))u, g < %X < 4w, (3.2.a)
' u(ay)cosd - u'(aq)sing = 0, u ¢ L2lay,») (3.2.b)

where tue function H is defined by

F(x,y) if y > 0, x>0

H(x,y) =
¥ F(x,-y) if y < O, x > 0.
) . . + -
! By 'Theorem 2.1, Sa1'n(x,6) # ¢ and sa1'n(A,e) #¢ for all n and
0 <8 < %« Pick a u ¢ 821'n(k,0) and let 24s2Z9s00942,_1 be its ,

ncdes. Then it is clear that

u(x) =V (iy(x,z_.1,2;,0,x) for x e [25_9,23]s 1< i<n

. where z5 =gaq and z, = +=. By (1.49)
h ) lvl(x'a1lz1lolz1)' < lV;(l:acZ1,0,z1)l . (3.3) |
\ From (1.37), we have, for 0 < 8 < %7 that

[vitria,z,,0,20 ] < {vihiaiz,,8,.20] . (3.4)

Combining (3.3) with (3.4) we get

i IVL(A.G1.Z1.0.Z1)| < 'Vl(l:a:z1:9:z1)' .. W
X N
. Since Vi(XA,aq,24,0,2q9) = V2(X,24,2;5,0,24),
N IV:(A12112210121)| < lVL(X:a.z1,3,21)| . (3.5)
; Let x5 = a and x; = 2z3, 1 < 1< n. Now, lcoking at )
1 inequality (3.5) we satisfy the hypothesis of Lemma 2.52 from which we .
-
obtain the required solution in S:'ntx,e). :f
) 8;'n(1,e) can be treated similarly. This completes the proof. T
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54. UNIQUENESS OF SOLUTICNS WITH A PRESCRIBED NUMBER OF NCDES

In this section, we will use a shooting argument to prove
uniqueness results for‘solutions with a prescribed number of nodes,
that is, for given A > 0, a » 0 (and b > a in the bounded domzin

cases), st (n) (resp. st

a,n a,b,n) as well as Sa'n(x) (resp.

s:'b'n(l)) contains at mest one element (see Theorems 4.6, 4.7).
Note that the existence of multiple node solutions has already been
established in Theorems 2.1 and 3.1. Now uniqueness will be proved
for a subclass of such problem. However, the symmetricity assumption
(F.5) or (F.5)' will not be assumed. To do so, we considexr the

following initial value problems

-u"{x) = Ar{x)u(x) - £(x,u{x)), a <x <+, (4.1.a)

u(a) = 06, u’(a) g if =0 in (1.2)

(4.1.b)

E o cotd if 0 <8 <~ in (1.2) .

u(a) = g, u'(a) 2

It is assumed that
(£.2) f£(x,y) is contin;ously differentiable in [0,») x R.
A 1s the eigenvalue parameter. Given a, A, § and £ there is a
unique solution Ua(x,g,e,-) of (4.1) which is understocd to be
extended to its maximal interval of definition. Clearly ua(x,g,e,x)
is of class C' in all of its arguments. Assuming (F.3), we have
U,(%,0,0,x) = 0 and for § # 0

u2(2,£,8,) + U32(A,E,8,0) > O . (4.2)

We will assume r(k) > 0, F(x,y) >0 and 0 ¢ 8 < %u Therefore

1f A <0, by (4.1.b) UJ « U, > 0. From (4.1.b), we know if £ # 0,
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! . ;
N 0t
U; . Ua >0 for x ¢ (a,a+¢) and so: - ¢ > 0. Thus, if Ua > 0
b . r
b for x ¢ (a,a + ¢) then U; > 0 and ;a » 0 in (a,a + g¢). Hence +3
! A
) . L8
. U; and Ua are nondecreasing and never vanish in (a,«). an t
L

analogous argument shcws U, cannot equal zero in (a,») either if

U, <0 in (a,a + g). So we will be only interested in A > 0. IlLet

Pl b dall ¥

a
| Dy (resp. 03) = {(A,£)]x » 0, £ >0 (resp. < 0J} . :
X
i + - -
) For fixed 0 < 8§ < > let Da'n(e) {resp. Da'n(e)), n > 1, be the "
¥ - ]
set of (A,E) ¢ UE {resp. UB) such that U,(X,£,8,+) has at N,
Y
least n =zeroes in (a,»). Ordering these zeroes as an increasing N
k. sequence .
‘ a < Za'1(X,E,e) < za’z(lrgle) € osee £ za'n(x,g,e) < vae K
) o}
we obtain functions 1z, , (n = 1,2,...) such that for fixed N
i - - +
¢ 0 <o < 2 and for every integer n. Za,n is defined on Ua,n(e) \
Y 4
- , + - )
y (resp. D, .(8)). Given (,£) €Da,n(e) (resp. D7 .(8)), N
Y x = za,n(A,E.e) solves the equation U_(X,£,8,x) = 0. -From (4.2), E
U;(A,E,e,x) #0 when x = za'n(A,E.B). Hence, by implicit function 2
N theorem there is a neighborhood (7 of (X,§) on which Za,n is of 3
: class c! in its arguments and there exists a maximal open set 0 3
containing 01 such that Za,n is so on (. Since D;.n(e) 4
y (resp. p;'n(e)) is the union of those components () it is an open
get. For fixed A > 0, we denote
+ - + -
Dy, n{2.8) (resp. D7 (1,0)) = {E](A,£) €D ,(8) (resp. D (8))} . i
\
| Then it is easy to see that +3
G + + 3
D.'nlx,e> 2 Da.n+1(A,6) . (4.3) b

We will use the above notation in the next section. Now,

throughout this section unless otherwise stated, we assume r{x)

- .
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f=00

satisfies
(r.2) r(x) =1, 0 x<w
e' and focus on the special nonlinearity which satisfies
"l
. (F.8) There are yYq,Y5 € c1([0,m),[0,w)), $1(0) = ¢o(0) = 0, y§ > 0,
‘5 V3 > 0 in (0,»), and a positive number ¢ such that )
26 ‘
Ry p -
» Yy(wix) |y, y>0, xe¢e [0,0)
+ e}
N F{x,y) =
¢2(W(x)ly]°), Yy <0, x ¢ [0,)
N
oo where w ¢ C1([0,»),(0,)).
.\‘:
‘: Furthermore, we list several assumptions related to the functions :
- U
. y and w
'~
:; (¢.1) There are positive numbers Py, P2, 994 and g, such that 1
- q q
" Y1(t) > pq » £ | and yp(t) > py » t 2 for t e [0,=). :
‘. (q)-Z) l1’)1 = Ipzo
Vo ($:3)  lim Pq(t) = lim yo(t) = +=. ‘
s t+o t o )
N .
V. w
S (wel) pon is nondecreasing on [0,®). ‘
~r -~ PN
7’ (w.2) There exists a b ¢ [0,») such that w'(b) > 0.
o
o
7 Remark 4.4
-
' Hypotheses (w.1) together with (w.2) imply w grows
o a o .
i: exponentially on [b,»). Hence f w’z/odx < +» 1is clearly satisfied K
S
LN 0
*$ and it is easy to check that assumptions (F.6), (y.1), (w.1) and (w.2)
18
) are stronger than (F.1)-(F.4).
rn
(W O
) Thus equation (4.1.a) becomes ;
v,
',;j Au - w,(w(x)lul")u if us>0
<2 ..u. - (405)
au - pytwix)|ul%u if wco.
'l
f
-,
~ L}
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Cur first main goal is to prove the following uniqueness results: :
Theorem 4.6 ;_
Assume (r.2), (F.6), (y.3) and (w.1) are satisfied. Let h
”
b>a>0 and neN. If A >y (a,b,0), s:—;’b'n(x,m has a unique
element. If 0 < § < %y A > un(a,b,e) and w'(a) > 0 then .
Si'b'n(x,e) has a unique element. ;
Thecrem 4.7 ;
Assume (r.2), (F.6), (Pp.1), (w.1) and (w.2) are satisfied. Let b,
a>»0 and n € N. Then, for every A > 0, S§ n(x,o) contains at !
14 -
most one element. If w'(a) » O, sﬁln(x,e) contains at most one
A
¢
i 0
element for all 0< 8 < 3. «
Remark 4.8 {
- —_—r e
(a) If case 0 < 8 < %7 the need for the extra assumption w'(a) > 0 .
3
will be seen in the proof. It is worth pointing out that :'
Corollary 1.45 (v) has the same sort of assumption.and will be }
by
used in the proof. g
"
(b) Combining Theorem 4.7 with Theorem 2.1, we have :f
L
Corollary 4.9 5y
Assume (r.2), (F.6), (p.1), (p.2), (w.1) and (w.2) are satisfied. <
:\
Iet a>» 0 and n ¢ N. Then foxr every A > 0, Si'n(x,O) has a N
RS
unique element. If w'(a) > 0, Si'n(x,e) has a unique element for o
T ‘
all 0<¢ 8 < 2 :.
‘o
Proof A
"
From Remark 4.4, we know the hypotheses of Theorem 2.1 are -
satisfied. Thus the result simply follows from Theorems 2.1 and 4.7. 3
r
o J
)
s
'

D)

I TR L SR R B R A N A I AT AN AN R PR G A AT A LT S R TR T T S A AN A A . °
;.\‘.'»;.';_\.- OV SOV IR PP o t.i'l’_.‘l.‘}‘ "y V.' ,, . .' NN " NN ’ 4 .‘ .‘ ‘ \' \ .-’ ,Q‘ L ?\ "fl' {




P-;”"k"'s"f\"-l‘l"f"'

68

Our second goal in this section is to prove a bifurcation
result. Note that for the case of bounded intervals the existence of
continua of solutions bifurcating from the eigenvalues of the

linearized problem is known for a wide class of nonlinear Strum-

Liouville eigenvalue problems (e.g. see [24], [37]). For our setting,
Theorem 4.6 shows that these continua are actually differentiable
curves in the Banach space R x Cz[a,b]. Heinz [7] has a result in
this spirit. However, our result is applicable to more general
nonlinearities and boundary conditions.

Theorem 4.10

Assume the hypotheses of Theorem 4.6 are satisfied. Let

0< 9 < %’ be fixed. Then, for each n « N, (I)a,b possesses two C'-
+

curves of solutions C_ and C; in R x c2?[a,b], where

¢t = (i A > upd U (a0} and w¥) e 83 00, g

’

being defined in (1.41).
For the unbounded interval case, we also generalize Heinz's
result [7].

Theorem 4. 11

Assume the hypothesis of Corollary 4.9 are satisfied. Let
0<H < %- be fixed. Let E be the Banach space H'la,=) N L®(a,=).
Then, for each n ¢ N, (I)a possesses two curves of solutions C:
and C7 in R x E, with C& = {(,uz(2))]x > 0} U {(0,0)} and

uR(d) € ST (1,0).

We need some preliminary work to prove Theorems 4.6 and 4.7.
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w({x) = ¢ (a positive constant) then it can be shown that Q;

{resp. Q;) = +o (resp. -=) for all n > 1.

since a, A and 8 are considered fixed in Proposition 4.12,

they will be suppressed from some of our notation, that is,

zn(E) = za'n(k,i.e) ’

U(E") - Ua(XoElel') ?
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Proposition 4.12
Let A >0 and a > 0 be fixed. Assume (r.2), (F.6), (w.1),
{$.3) are satisfied and if 0 < B < 3, then w'(a) > 0. Then, for
every integer n > 1, there exists a positive number n;,n(x;e)
(resp. negative number n;'n(x,e)) such that
Di n(X.8) = (0,0 (A,8)) (resp. D .(X,8) = (a7 [(A.8),0)).
goreover, in (O,Qzln(x,a) (resp. (Q;,n(x,e),O)) we have
3z
(1) —;is—“ >0 (resp. < 0) (4.13)
and
(1i) E-’nt.lin(x)”e) Za,n(Ae£,8) = += . (4.14)
a,n
Remark 4.15
(a) wWhen A, 8, or a is considered fixed, we suppress it from our
notation ni and Di.
(b) If (y.2) is satisfied, it is clear that Q = -p . In this
case, we use the notation Q, instead of n;.
(c) It is also clear from Proposition 4.12 and (4.3), that Q;+1 < n;
and Q.4 > Q.
() Q; (resp. Q;) could be += (resp. =-=). For instance, taking
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Df = D3 o(A,8) .
We define
O elE.x) = ‘32 UCE . x) (4.16)
for x » a such that U(g¢,x) is defined. As is well-known [35],
9(£,+) then is the unique solution of the initial value problem
(In = 4, UG, %) [9) = apitwix) |utg,x) |9 wix) [ucg, x) |O]q
if U0 (4.17.a)
-p™ = ¢
? I = wptwix) [ulg,x)|%) = agug(wix) |ucg,x) | Twix) |ulg,x) [0
{ if uv«<¢<o,
pla) = 0, p'(a) =1 if 9 =10
(4.17.b)
pla) =1, o'(a) =cot§ if 0 < <-§
and
ot = ur (4.18)
14
Next, we introduce two auxiliary quantities ¢&(g,x) angd
¥(g,x) by
& =o'U-U'g, (4.19.a)
¥ =o'U - U . (4.19.b)

It is easy to check from (4.5) and (4.17.a) that

ayj(wlu[9wlu[TUp if U0
¢! = (4.20.a)
ayy(w|u|PIw|u]%p if U< O

and

~pj(wlu|9w' [ulUp if U >0
y - (4.20.b)
-y3(wlul9w'|u|%0, if U <.

Moreover, from (4.19), (4.1.b) and (4.17.h), we have

#(£,a) = 0 for all 0 < 8 < % (4.21.a)
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and

E if =0

¥(E,2) = (4;21.b)

£+ cot?e - U"(g,a) if 0 <o < L.
Now, we prove several lermas.
Lemma 4.22
Suppose (r.2), (F.6) and (w.1!) are satisfied. Then as a function
of x, there is a zero of U(f,+) between any two zeroces of ol(f,}.
Proof
’This immediately follows from the Sturm Comparison Theorem Ly
comparing equations (4.5) and (4.17.a).
Lemma 4.23
Assume (r.2), (F.6), (w.1) are satisfied and suppose w'(x) > 0
for x ¢ {(a,»). let 0 <8 < %- be fixed. If £ ¢ D: (resp. D;)
then U"(g,a) < C.
Proof
Let b = z,(g), the first zero of U(g,+). By Theorem 1.5
U(g,x) = V . (x,a,b,x) for =x e [a,b]. Thus, by Remark 1.55 (a), (b).
we have the lemma provided that the hypotheses imposed there are
satisfied. It is easy to see that all of these assumptions except for
(F.2) are satisfied. However, from Proposition 1.43 and Remark 1.44,
we know V,(i,a,b,0,¢) exists for every b < +» such that
A > uqla,b,8), 6 ¢ (0, %J- So we have completed the proof.
Lemma 4.26
Assume (r.2), (F.6) and (w.1) are satisfied. Let 0 <9 ¢ 3 be

fixed. If U{Z,s) has its first zero at zye Then o(E,x) # 0

for x ¢ [a,z1].
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Proof
s If not, let n > £ > 0. Then ¢9 = n * ¢ 1is also a solution of
? equation (4.17.a) and g¢4(a) =n, ¢j(a) =n « cotd. Put v = U(g,.).
. Since ¢1(a) =n > & =v(a) and ¢4 has a zero in {a,zy] there
Y
" exists an x4q such that g¢q(x,) = v(x;) and
»
. 94(x) > v(x) > 0 for x e [a,xq) .
“' Thus
;
% pi(xq) € v'(x) .
- Let ¢ as defined in (4.19.a). Since from (4.20.a) and the
a hypothesis w; > 0, ¢* >0 in [a,x1), we have
% $(E.xq) > $(5,a) . (4.27)
k"
: On the other hand, by (4.19.a)
o $(E,xq) = @"(£,x9)U(E,xq) =~ U'(E,x)qlE,x)
5
\ 1
: =5 Pilxpvixg) - vi(xqleqixg)] - ‘
P Combining this with @q(xy) = v(xq) > 0 and ¢}(xq) < v'(xy) we ;
4 obtain
v
- \
b #(g,xq) < 0.
M
f{ This together with (4.21.a) contradicts (4.27). The case £ < 0 can
'¢ be treated similarly.
i
: Proposition 4.28
'§ Suppose (r.2), (F.6) and (w.1) are satisfied. Let ) > 0 and
: 0 <9< %- be fixed. Suppose £ ¢ D; (resp. D;) for some integer
>
P n > 1, and assume 3
" '
(]
y U'(z, )p(zy) < 0 (resp. > 0) (4.29) \
;f for k = 1,2,...,n (where 2z, = z,(£)), then for any & > z, such :
)] ,
- that U(x)e(x) ¥ 0 for z, < x < R we have X
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v(g) - ¥(z )
¥(R) > ¥(a) + ¥(X) ' (4.30)
(X)) ~ ¥z ) .

¥(R) - ¥(z.)
n

(resp. ¥(}) < ¥(a) + o(%)
R - o(z))

where V(%) = ¥(£,%) etc.
Proof
We only carry out the case of £ ¢ D;. let 25 =a and

Ik = (zk—1'2k)' k=12,...,n. Suppose first § = 0. Since
9f(a) = 0, Lemma 4.22 shows ¢ cannot vanish in I, If 0<9 < Eq
lemma 4.26 implies ¢ # 0 in I, either. Moreover, for all
0< 9 < %y if X > 2 the interval Ik contains at most one zero of
¢ From (4.29), we know o changes sign in each Ik for k » 2.
Also note that ¢ # 0 in (zn,ﬁ) by hypothesis. Thus ¢ has
exactly n ~ 1 zerces Sy,Sy,+..,8,.¢ in (a,%) and s ¢ I,4q for
1<k <n - 1. Define points XgeXqreossXoy by

Xg =a,

Xgn =%+

Xk=1 = % 1< k<n,
X2 = Sk 1<k<€<n=-1.
Then clearly XqreosoXon ¢ are the first 2n zerces of U« ¢, in
their natural order, in (a,%).
It is easy to check that
| O(Xj) >0 for 1< j<2n~-1. (4.31)

Indeed, for odd 3j, thig follows from (4.19.a) and (4.29). For

even j, say J = 2k, this due to the sign of U in I,,4 and the

sign of o' at 8, ¢ both are (-1k,
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Next, set p(x) = w'(x)/w(x) for x > a. Since U+ p and
consequently &' does not change sign in (xj_1,xj), by the Mean
Value Theorem there exists tj € (xj_1,xj) such that
x x
J 3
f P(x)9'(x)dx = p(ty) [ $'(x)dx, 1< j < 2n . (4.32)
xj_1 xj_1

From (4.20), pé* = -g¥', which, together with (4.32), leads to
O[‘P(xj) - 'i’(Xj_1)] = ’P(tj)[Q(Xj) - °(xj_1)]' 1< 3< 2n. (4.33)
Summing up from j =1 to 2n yields
2n

ol¥(%) - ¥(a)] = - jz1 P(ty) [8(x4) = #(xjoq)]

- -0(i)p(t2n) + d(a)ple,) + 2:2: #(x35) [p(tg,0)-p(Ey)] -
By hypothesis (w.1) and (4.31), (4.21.a)
a(¥(%) - ¥(a)] > =8(R)p(t, ) .
Finally, tc obtain (4.30), we use (4.33) to eliminate p(th)
from the last inequality. We can do so since ¢' does not vanish
in  (xg,_q:%).
Lemma 4.34

Assume (r.2), (F.6) and (y.3) are satisfied.

Let @= Min w(x) and c = Max((yp71 0/ V9, 3 00/ 1),
xe[a,b]

If v 1is a solution of (I)a,b then

vy - <c (4.35.a)
L [a,b]
and

v </r s cC. (4.35.b)
L [a,b]
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Proof

Suppose Vv attains a positive maximum at s ¢ (a,b). Then

\ v*(s)/v(s) < 0. Now due to the hypotheses, equation (1.4.a) should be N

read as (4.5) which implies that

A - xp1(w(8)fv(5)f°) >0

and hence

v(s) < (71 0msN 9 < lonm /e (¢.36)

In view of the boundary conditions {(1.4.b), we know the only way

that v could attain its maximum at a boundary point occurs at x = a

o 5

and when 8 = %u In this case u'(a) = 0 and u"(a) < 0. Thus, the

same argument as above shows (4.36) holds at s = a. Therefore, we

have .

v(x) < (7' /@19 for all x e (a,b] .

- A similar argqument for negative minima of v yields

y vix) > ~(p3' 0/ V9 for all x e (a,b] . P

Thus (4.35.a) follows. Combining (1.65) with (4.35.a), we get 4

(4.35.b).

For the next result, we suppress the dependence of a and 8

from our notation.

Proposition 4.37

[ L A W
[ ST

Suppose (r.1) and (f.2) are satisfied. let a > 0 and

0¢8<T be fixed. Let n e N and (Ag/Ex) € D; (resp. D;) such

? 2 3
f that 140 (A Ex) = (X,E) € 03'n 803 (zesp. Dy n a0 ) then :
D k+m .
lm zn( Xk'Ek) = oo, .
% k+m

C A
!
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Proof

Suppose this were false, there would exist 2 b ¢ (a,») such
thaﬁ. by passing to a subsequence if necessary, zn(xk,sk) converges
to b as k + ». By the continuous dependence of the solution on
parameterxrs

c’{a bl
U(Aklgkl') —_—— U(A:E,-) .

Since £ # 0, U(A,E,*) cannot be the trivial solution and hence can
only have simple zeroes. Therefore U(A,£,e) must have at least n
zeroes in (a,»). This implies (),E) ¢ U; (resp. D) which
contradicts that D; (resp. D) is open.

Proposition 4.38

Suppose (r.1), (f£.2) and (F.3) are satisfied. Let a > 0 and

0 <6< %- be fixed. Let [A,X] be a compact subinterval of (0,=).

let b,

every n ¢ N,

]

b(X) € R be such that ux(a,a + by,8) = A. Then, for
if b > by(}), there exists a positive number
€n = en(A,X,D) such that if 0 < [g] < ¢, ana X e X1/ Uy(a0E,0)

has at least n zeroes in (a,b). Moreover

lim z, n(A,E) = a + by(A) .
g£+0

Proof

-1
Let v, . =& « Uy(A,6,+) for § >0, then v, . is the
solution of the initial value problem
~v® = [Ax(x) = F(x,Uy(A,E.,x))]v , (4.40.a)
v{ia) = 0, v'(a) = 1 if =0,

v(a) = 1, v'(a) = cot§ if 0 < 6 < g-.

(4.40.Db)

Next, let w, be the solution of differential equation

,
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-y = x:(x)§

»e

together with initial conditions (4.40.b). Then it follows from the &

Y assumption (F.3) and the basic theory of initial value problems [35] -
N ll
that .
1 lim v = v It
i £+0 AsE A ‘ ::
and N
.
J -
" lim vx'g = vi o
3 E-bo \
1 W
§ A
: uniformly on compact subsets of {(A,x)lx > 0, x > a}. Pick :
. N
. b » by(A). Since upla,+,8) is a decreasing function, b > b (A) B
s b
. for A e [A,X]. 'Thus, there is an g, = g,(A,X,b) such that for A
‘ ]
[ - 6 <Eg<eg, and 1« (A,A] the functicn VAL is defined and has at }
least n zeroes in (a,b). Méreover, the first n zeroces of Vk.& )
b tend to those of v, as { + 0. A
) N
The case =~g, < £ < 0 can be treated similarly. X
o
) Now we are ready to verify Proposition 4.12. -
: ¢
< Proof of Proposition 4.12 x
] We only verify the result for D;. Recall that ¢ was defined I
- ‘nf
in (4.16). Suppose, for every E ¢ D; B
X (g2, (£)) /U (E,2,(E)) < O (4.41) ?
)
then the equation U(g,zn(g)) = 0 yields ”
> dz_(€) olE,2_(E)) )
' L -0 (4.42) 2
X ag U'(E.zn(a)) ‘A
4
. and hence (4.13) immediately follows from (4.41). b
Next, we prove (4.41) by induction on n. By (4.17.b) and Lemma
4.22 in case of ® = 0, or Lemma 4.26 otherwise, we know J
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N

‘ ¢(€,2¢(8)) > 0. This together with U'(g,z¢(£)) < 0 implies (4.41)

'\

L~ holds for n = {.

; .

;5 Suppose, for n » 2, that (4.41) is established for all indices

i
up to n -~ ! and suppose there exists a £4 ¢ D; such that

g

o #(Eqrz (Eg)) = 0. Then, by Lemma 4.22, ¢(f,X) # 0 for

A

g

) X ¢ (zn_1(go),zn(go)). Using the induction hypothesis, (4.29) holds
for 1 < k< n - 1. Thus applying Proposition 4.28, we get

\ )

. ¥(x) - li’(zn_1)

v ¥(%) > ¥(a) + (%) .

! ~

" ¢ (x) ¢(zn_1)

el letting X = z,(£y) and using the fact that @(gc,zn(eo)) =0 we

",

i: obtain

&

z: ¥(£q,2,(Eg)) > ¥(Eg.a) « (4.43)
In case of 8 = 0, by (4.21.b)

i

"y ¥(gg,a) =Eg > 0 .

n

)

. If 0<8 <§ by (4.21.b)

' ¥(£4,a) = Egcot?e = U"(E,a) .

2

:’,‘ Since w'(a) > 0 and w(x) > 0 for x » a, by hypothesis (w.1),

'~

s w'(x) >0 for x » a. Thus applying Lemma 4.23, we have U"(f,a) < C

j: and consequently

. !(Eo,a) >0,

, Thus, in all situations 0 < 6 < l;:" ?(Eo,a) > 0 and hence, by (4.43),

Ii

":

Vi ¥(Egrzn(£g)) > 0 (4.44)

A

'j_' On the other hand, we know 2z (£g) 4is the n-th zero of U(£g.*)
and the (n - 1)~th zero of ¢(Ey,*) in (a,=). By (4.1.b) and

o
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(4.17.b), it is easy to check that ¥(ggrzn(Eg)) = @'(go,zn(go)) .
U'(€5,2z,(5g)) is negative. But this is contrary to (4.44). Thus,
there is no §£q ¢ D: such that ¢(£q,2,{(Ey)) = 0 and consequently
Q(E,Zn(i))/U'(E,zn(E)) is of constant sign on each connected
component of D;.

Suppose there is a nonempty connected component C of D; on
which the sign is positive. Then it follows from (4.42) that the
function Z, 1s monotonically decreasing on C and hence choosing
£y € C and setting b = zn(§1) we have zn(g) < b for every
g eCn [51,x). Since CnN {51,m) is a nonempty connected open set
it must be an interval [£4,§3), §3 € +=. Suppose ¢, < +w. By
Proposition 4.37

2im 2 (E) = +=
34

which is contrary to that 2z, (f) < b for all { € [£4.§3). Hence
E; = +o and [£4,) C C. Let ve(x) = Ulg,x) for x ¢ [a,zn(E)]-

Then, by Lemma 4.34 and z,(f) < b for £ ¢ [£q,»), lvéu -
L [a.zn(s)]

are uniformly bounded. This contradicts to vé(a) = . Therefore
(4.41) holds on all of Df.

Now we are going to show D; contains only one connected
component. Suppose (n1,né) is a connected compcnent of D; by
{4.13) we know that

lim z (E) = Inf 2 () .
E+n, (n1.n2)

On the other hand, if nq ¥ 0 it follows from Proposition 4.37 that
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lim z (E) = += .
E*n,

Thus, .n1 must be zero, otherwise we would have a contradiction.
Since (“1'“2) is an arbitrary connected component, we conclude

that D: contains only one connected component and has the form

(Ofﬂ;) where 0 < Q; < +w. é'
Finally, if Q: < +» we obtain (4.14) from Proposition 4.37. 3
If Q; = +» and (4.14) were false, then there would exist b > a 5:
such that ?~
k"
gz z (£) = oo 2 () < b . ?I
By letting vg(x) = U(g,x) for x ¢ [a,z;(Z)] and using Lemma 4.34 ii
it would lead a contradiction as before. This completes the proof. ?
Remark 4.45 :
From the above proof we know if £ ¢ D; or D_, (4.18) implies 0
(8,2 (8)) » U'(E,2)(§)) <D for 1< k < n. Thus the zerces of
¢(E,+) and those of U(f,s) are interlaced.
Proof of Theorem 4.6
By (4.13), we know S; as well as s; contains at most one
element. However, Proposition 1.43 and Remark 1.44 indicate that
S; and S; are nonempty. Thus the result follows.
Since the proof of Théorem 4.7 needs more preliminaries and
Theorem 4.10 is closely related to Theorem 4.6, we prove Theorem 4.10
first.
3
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Proof of Theorem 4.10

let

[N v + uv - w1(WIVl°’)VI if va>0
Tlu,v) =
v+ v = Yylwlv]9v, if v<co.

Then T : R X Cg[a,b] + Cla,b] where Cg = {g ¢ Cz[a,b]lg(a)cose -

g'{a)sing = 0, g(b) = 0}. Let (A,u) be a zerc of T with

uesSyp (A98). If T,(A,u), the Fréchet differential of T with
Ll

respect to v, is an isomorphism, then the hypotheses of the implicit
function theorem [30] are satisfied and hence there is an ¢ > 0 and
a C’-mapping u -+ u;(u) for !u - Al < & such that T(u,u;(u)) = .

Thus, it suffices to shew T (X,u) is an isomorphism for every pair

Q

(A,u) such that u ¢ S+'b’n(k.e) or equivalently to show that 0 is
not an eigenvalue of Tv(x,u) [35]:

o3+ D=y q(wlu|9)=opj(w|u|9wlul%le,, if uw> 9
(4.46.a)

Tv(xlu)¢1 = .
oG+ (wlu|T)=ops(wiu]DIw|u[%eq, if w <o,

pi(alcosf - gj(alsing = 0, (b)) =0 . {4.46.D)

Let ue Sy, (1,8). let £ =u'(a) if =0 and € = u(a) if

0<H8 ¢« %- then U (X,£,9,x) = u(x) for x ¢ [a,b] and

za'n(A,E,B) = b. sSuppose 0 is an eigenvalue of T (A,u) with
eigenfunction gp4. Multiplying by a constant if necessary, ¢,
satisfies (4.17.b). By the basic uniqueness result of initial value
problems ¢4 = %E Ua(he£,8¢¢) = @(gse). But from Remark 4.45, we know
e(g,b) # 0 which is contrary to (4.46.b). Thus we complete the
proof.

Now, we continue with the preliminary work needed for the proof

of Theorem 4.7. Let X >0 and 0 < 8 < %u For n » 1, we define
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i
+ - )
Qa'n(xle) (resp. Qa,n(he)) = {EIUa(LEpGp*) € S;'n(X'e) ’ :
(resp. Sa'n(x,e)} . 3

Again, for convenience, we will suppress dependence on 1, §
or a from our notation whenever it is considered fixed. o

Proposition 4.47

Let a » 0, X > 0 be fixed. Under the same hypotheses as in ::
A
Theorem 4.7, we have ;
+ + - - .
(1) o} = (o7}, 07 = {a7}- 4
(1) For n > 2, ot c 1at.at_) (xe Q- _,.020) :
¢ 9 n’*n-1 SPe ¥p-17%nt '
. + - + + - - iy
(iii) 1If on (resp. Q“) # # then Qn € 9 (resp. Q, € Qn)'
(iv) If Q; (resp. Q;) contains a unique element then Q; = {Q;} ;
!
(resp. Q7 = {a7})- 3
Proof ‘
Let n > 1. Pick an increasing sequence {§;,} such that tl
“
k+s »
Y
Put -
U(Ey,x) if x ¢ [a,zp(Ey)) v
Vk(X) = A
0 if x e [zp(g) /=) - I
By Proposition 4.37 S
lim z,(gx) = += . (4.48) "
k+¢ :‘
From the Remark 4.4, we know the nypothesis of Theorem 1.2 are "
gatisfied. Hence, by Lemma 1.57 and arguing like the proof of Theorem f
o
1.2 we have a prior bounds on v, and obtain a subsequence {v, } X
£ N
and a Vv ¢ C2(a.a) N H1[a,w) such that
5.
~
Fal:
S
v
VWi

t
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2

vkz —E——* v uniformly on compact subintervals of [a,»)

for x ¢ [a,»). Thus, by the uniqheness result for the initial value
problem, v = U(n;,-). Also note that, from (4.48), U(n;,.) has at

most n - 1 2zeroes in (a,=).

?. Hence, by Theorem 1.5,

For n = 1, it is clear that v ¢ S
(1) follows.

For n 3> 2, |if Q; = ¢ there is nothing to prove in (ii). If

+ . + + + ‘s

on # ¢, since for any E ¢ Qnr & ¢ D,-4\D, and by Proposition 4.12,
+ + _+ s 3

Dn_1\D; = [Q,/Q.¢), we have (ii).

To prove (iii), let n ¢ Q;, it follows from (ii) that n > Q;.
Suppose n > Q;. Since U{n,+) has n - 1 =zeroces in (a,»), Lky
Propesition 4.12, U(n;,-) kas at least n - 1 zerces in (a,®).
However, we already know U(n;,-) € Cz[a,w) N H1[a,w) and has at most

+ +
n-1 zeroes in [a,»). Therefore Q, € Qn‘

Finally (iv) simply follows from (iii).

Proposition 4.49

Let A >0 and a » 0 be fixed. Under the same hypotheses as

in Theorem 4.7, if n > 2 then Q; (resp. Q;) has no cluster point

in [Q;,Q:_1) (resp. (Q;_1,Q;])-

The proof will be carried out only the case of Q;. Some

preliminaries are needed.

Lemma 4.50

et A >0, a>» 0 be fixed. Assume the hypotheses of Theorem
4.7 are satisfled. Suppose § ¢ Q; for some n > 2 and suppose that

U(E ,x)p(E,x) < O (4.51)

-SRI T S A R '._‘-‘2_ S . L I ] oy~ . .- " - « . .
e v > e e L aetele '. , ,'f ;". N’H"i{ \-’.'t._ AT T m T Ll A R o ."; T\r\v "\ Ny
- . -

’

. >
N

S

-

o -

'I
"0

P R A AL .

L I |
€

PN

»

“

CTALN O e

Sl

.'(\1 '; .:_

)

b

A
b}

N N O P A

'III“(.:'%- [

5!\- l‘n‘- -



'.?-”1 o

A

)%( '

P g

-

S

X

~
e
L -

T i A A

LI e

)

Proof

~.. X ) I'lo‘ "' \J {J 0 gal ot WU * 2 pak \J Y hat. et 4ot v _Sa¥ J b . J ¥ _gad ) X - ) -

- L Y] Wl N Ny M W W WMy W W, Y WL W W Wy

84

for x € (zp.4(§),»). Then there exists a ¢t ¢ (zp-1(E£),=) such that
Y(£,t) > 0. 14.52)
\
From Remark 4.45, we know (4.29) holds for 1 < k< n -~ 1.
Hence, it follows from (4.30) that

¥(x) - ¥(z__ (£))

¥(x) > ¥(a) + &(x) 0 - #(z__ (21 (4.53)

for x ¢ (zn_1(§),m). let
5 = Inf{x|w'(x) > 0} . (4.54)
By assumption (w.2), we know B < +w,
Suppose b > z _,(f£). The assumption (4.51) together with (4.20)
implies @¢'(x) < 0 for x ¢ (zn_1(£),5). So
% (x) é $(z,_4(8)) . (4.55)
Similarly, ¥'(x) < 0 for x ¢ (zn_1(§),5). Hence
¥(x) < ¥(z,_4(£)) . (4.56)
By Remark 4.45 with k =n - 1, (4.19.a) yields &(z,.4(£)) > O.
Hence, there exists a §4 > 0 such that &(x) > 0 for
x € [25.9(8),2_q(E) + §4]. Combining this with (4.54)-(4.56), we
obtain
¥(x) > ¥(a) .
From (4.21.b) and Lemma 4.23,
¥(a) > 0 . (4.57)
Therefore, ¥(x) > 0 for x e [(z_1(E), 2z _1(E) + 84]-
If B <z _4(8), by (4.20.b) and (4.51), ¥'(x) > 0 in
(z2n.1(),»). Hence, by letting Ly = lim ¥(x), where == < Ly < +=

X»o
we have

J
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Ly = ¥(x) >0 for x ¢ [zn_1(£).w) (4.58)

and (4.52) easily follows if Ly > 0. To show Lg > 0. Note thét
from (4.20.a) and (4.51), &'(x) < 0 in (z,_,(E),®). Thus, by

letting L, = lim $(x) where -« ¢ L, < +w, we have

X>o0
LZ -~ 3(x) <0 for x ¢ [zn_,(g),w) . (4.59)
Lletting x » 4o in (4.53) yields
Ly > ¥(a) + L3(Ly = ¥(2,_4(E))) (4.60)
where
1 if Ly = —
I-‘z/(Lz - ¢(Zn_1(g))) if L2 > o
Suppose Lj; < 0. By (4.59), we get L3 > 0. Combining this with
(4.58) and (4.€0), we obtain L, > ¥(a). By (4.57), Ly > 0.
Therefore it remains to show L, < 0. We argue indirectly. Note

that, by Lemma 1.7, we know

lim U(x) = 0 .

X+
Since (g/U)' = 3/U2 » +@ as x » +w, if L, > 0, we have
(p/U) + +» as x + +w. But this violates (4.51). So we must have
L, < 0. This completes the proof.-

Lemma 4.61

Assume the hypotheses of Proposition 4.12 are satisfied. Let
E,n ¢ Q; for some n > 2 and £ < n. Then for x > zn_1(n)' we

have

lotg.x)| > [utn,x)]
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Proof

From Proposition 4.12, we have Za~q(n) > z,_4(E). Next, by
Theoreﬁ 1.5, U(E,x) = Vr(n)(x,zn-1(5),w,0,x) for x e [z, 4(£),=)
and Uln,x) =V, (n){As2q_q(n},»,0,x) for x ¢ [zp_q(n),=). (Recall
the function t was defined in (2.53).) Invoking (1.50), we have

(Ve ny (A rzno1(E) =, 0,30 > [V (ny)(Rezqoq(n) e, 0,%) ]

for x € [z,_4(n),») and thus the result follows.

Remark 4.62

In this section, since f(x,y) 4is assumed to be continuously
differentiable, the hypothesis (f.1) is clearly satisfied. Hence, as
pointed out there, the inequality (1.50) as well as others should be
interpreted in the strict sense. 1In the remainder of this section, we
will use this fact without furﬁher comment.

Proof of Proposition 4.49

Let us define the function E = E(f,x) by

1,2 A 2 ulx)
7 v x) + 3 ut(x) -/ Ye(wix) |y|P)ydy 1f u(x) > 0
0
E(E,x) =
1,2 A2 u(x)
30 )+ 5 ut(x) - £ ¢2(w(x)'yI°)ydy if ufx) <0

where u = U(f,+). Then

' u{x)
utum+iuu’ -, (wlu|?uut- ¢;(w,y|°)w'lyl°ydy if u(x) > 0
0

JE
Ix
f u(x) < 0.

-

u(x)
u'u'+xuu'-¢2(w[u]°)uu'- f ¢é(wly|°)w'|y|°ydy
0

Substituting (4.5) into the last equation, we obtain

AR N A A e Ry A A g L D L G s
. " - . - S b) - - g - ” - W a0 »




Wiwly 9w ly|%ay if uix) > 0

(4.63)

oty o

Yy

- [ eawly|9wly|9vdy if u(x) <o .

Next, letting ¢ = ¢(f,*), then

; u'e' + Augp = Yylwlu[Tlup if wu(x) > O

L A T

13 uly' + Aup - gpz(w‘ulc)Urp if u(x) <0.

-
)
S

Combining (4.5) afid (4.19.b) with the last equation, it follows that

-~ . o

St

2E | yig,x) . (4-64)

¢ . 36 v

" If ¢ ¢ Q;. u=U(g,*) ¢ H1[a,w). This together with Lemma 2.12

LSS

implies E(E£,¢) ¢ L’[a,w). Let s = Max(b,zn_1(5)) where ; was

I,
. defined in (w.2). We claim that E{f,«) is decreasing on (s,») and

therefore, we have

t s w8 o -~

E(E,x) + 0 as x » = . (4.65)

Indeed, if U(E,x) > 0 for x e (z,_4(E),») (4.63) together with Ry

(w.1) and (w.2) shows that Eka,-) is decreasing for x ¢ (s,»). If

- X £ % W}
L,

U(E,x} < 0 for x e (z,_4(E),®), (4.63) yields

-

3 0
' <= vy(wix) |ylw'|ylOyay .
\ u{x)

Combining with (w.1) and (w.2) again shows that E(g,.) is decreasing

SR e e )

on (s,»).

Consider those £ ¢ Q; such that there is a decreasing segquence

{€x} 4in Q; which converges to £ as k + ®». Then, by (4.13),

L o Py

L S S B IO I N

<

zn_1(5) is the limit of the decreasing sequence {z,_4(§y)}}. Hence,

DR |

for every x > z _,(f), we have x> z,_1(gy) provided k is

. -
..............
----------
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sufficiently large. From Lemma 4.61 we know
{ug, )| > [U(g,x)] (4.66)
for x « (Zn-1(Ek) =)
If U(g.,x) >0 for x e (z;_4(5),») then U{Eksx) > 0 for
x € (zpo1(£x),»). Thus, by (4.63) and (4.65), we have

® U(E,t)
E(g,x) = [ [ Y wit) |y (£) |y]|Tydyat

E(gy,x) = [ [ pi(wit) [y[%)wr (t) [y|Tyayat
0

for x ¢ (z,_4(£x),»). Combining this with (4.66), we get, for any

X > zn_1(E):
E(;,%x) < E(£,x)
provided %k 1is large enough.

Since %E- is known to exist the last inequality together with

(4.64) implies
¥(g,x) < 0 (4.67.a)

for every x > z,_4(£). However, (4.66) and (4.16) also show that

e(E,») is nonpositive on [zn_1(g),a). Since ¢(gE,+) is a solution
of (4.17) it has only simple zeroes. Therefore
e(E,x) <0 for x e (z,_4(£),=) (4.67.b)
and hence
U(E,*)p(Es°) €O
in (z,_4(E),=). By Lemma 4.50, there exists an x ¢ (zn~1(E) ™)

such that ¥(£,x) > 0 which is contrary to (4.67).
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by, ; If U(f,x) < 0 for x e (z,_4(§),®), the same line of reasoning
;1 with only the sign of (4.67.b) reversed yields a contradiction to '
; '
;i (4.67). Therefore, if‘ E ¢ Q; it . cannot be the limit of a decreasing i
g: sequence {gk} C Q;. Likewise, with slight modifications in the above :
d argument it cannot be the limit of an increasing sequence in Q;. 3
ij Since any convergent sequence contains a monotone subsequence, the ‘
. proof is completed.
?f Recall the notations V:(X,a,b,e,x) and un(a,b,e) which were
3‘ defined in Remark 1.6 (b) and (1.41) respectively. ]
S Lemma 4.68
f: Assume (r.1), (F.1)=(F.4) and (f.1) are satisfied. Let 9
i' b ¢ (a,») and A > yyla,b,8). Then, for x ¢ [a,b] |
\
- Vita,a,b.8,x) = U3(A,Vi(X,a,b,8,2),0,x) if 8 =0, ‘
_. Vi(r,a,b,0,x) = US(A,V4(X,a,b,0,2),0,%x) if 0 <0 < %. h
i It simply follows from Theorem 1.5, the definition of |
f- Vt(x,a,b,e,-) and that of U,{(A,E,0,°). E
o Lemma 4.69 :
_: Asstvie the hypotheses of Proposition 4.12 are satisfied. Suppose i
- A > uyla,b,8). et £ = Y}(A,a,b,0,a) (resp. V!) 4f 8 =0 or i
;: E=V,.(x,a,b,0,a) (resp. V.) if 0 <8 < %ﬁ Let n = {3{x,a,b,8,b) .
3 (resp. V1) ’
(1) If n <8y .(0) (resp. > Qf .(0)) then £ > 23, n+1(0) :
." -~
-. (resp. < Q7 ;,4(8)). '
% (11) If n > Q5 (0) (resp. < Gp .(0)) then € < Q7 nyq(8) '
D (resp. >Q;'n+1(e)). 3
o
N 3
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k)

(1) If n < Q;'n(O) by Proposition 4.12, n £ D;'n(O). Hence

AN e

E £ D; n+1(8). Thus, by Proposition 4.12, we know

E>8% L0,

a,n+
(i) If n > ng,nw), by Proposition 4.12 n ¢ o;'nm). Hence

E ¢ D:,n+1(9)' Thus, by Proposition 4.12, we have

+
£ < Qa,n+1(e)‘

Proposition 4.70

Proof

Assume the hypotheses of Theorem 4.7 are satisfied. Let )\ > 0,
0 <9 < %— be fixed and n » 2. If a > a >» 0 and Q;'n(e) (resp.

0z,n(8)) # ¢, then Q7 /(8) (resp. Q7 .(8)) # o.

We suppress A from the notations Vt' Uu' and etc. Let
E ¢ Q;’n(e) and suppose Uu(g,e,-) has interior zeroes at
XqsXgseeesXpnoqe It is clear that

IV+(u,x1,e,x) if x € larxq]
U,(£,8,x) =
lvr(i)(xi-1'xi'°"‘) if x e [x3_q%5], 2<i<n
where x, = +o and the function <t was defined in (2.53).

Since 1 > u4(a,xq,8) > pqla,xq,6), by Proposition 1.43
V+(a,x1.3,°) exists. By Corollary 1.45 (ii) if o = 0 oxr by
Corollary 1.45 (iii) if 0 < 8 < %, we know

[Vita,xq,0.%) | > [Vitarxqs0.%)]
Since
Vilarxq,8,xq) = UL(E,8,xq) = Vilxq,X3,0,%y)
ve get

Ve(a,x,,0,x0] > [V2lxgx,,0,%0)] (4.71)
+(arX, 1 12%2 1
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Now letting x5 = a and locking at Vr(1)(xo,x1,e,-) and

Veei)(*¥5-1s%;+0,°), 2 < 1 < m, with the inequality (4.71), we satisfy

N

the hypotheses of Lemma 2.52. Hence there exists a v € s; n(e).
F

Letting n =v'(a) if 9 = 0 and letting n = v{a) 1if 0 ¢ 9 < L

2

we have n ¢ Q;,n(e).

Proof of Theorem 4.7

et X » 0 be fixed. Since for every 0 < § ¢ %- and for every

a>»o, Q;'1(6) as well as Q;'1(e) contains a unique element it is
sufficient to prove, by induction, the following statement:

If for every 0 < 8 < %- and for every a » 0, Q

a,n(e) (resp.

Q; n(8)) contains at most one element, then, for every 0 < © <‘%

14

and for every a 3> 0, Q;,n+1(e) {resp. Q;'n+1(6)) cannot have more

than one element. (4.72)
Suppose there exist a > 0 and 0 < § < %- such that

Q; n+1(e) contains more than one element. By Propositions 4.47 (‘ii)
[ 4

+

1 and 4.49, there is a ¢, ¢ Q;,n+1(9) such that (Qa,n+1

(8),g) N
0F ne1(8) = 8. Tet b=z, (8 (6),8) and s =z, 4(E;.8). Take
any a ¢ (a,b) such that yy(a,b,8) < X. Then, by Corollary 1.45
E (11) or (iit),
: vita,s,0,s) <Vila,s,6,s) .

let §o = 05(51,8,5)- From Lemma 4.68

Vila,s,9,s) = E5 -
Thus, letting £3 = V;(u,s,e.s), we have
€2 < &3
S8ince £, ¢ Q;'n(O). by the induction hypotheses and Proposition 4.47

- - -- -
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This yields
£€3 > ns,n(o) ‘
By Lemma 4.69 (ii), we have
+
U;(alslola) < Qa'n+1(o)
and (4.73)

V,(ars,8,0) <QF _,q(8) if 0 <O <5 -

a,n+ 2

Since Q;'n(O) # o, by Proposition 4.70, we know Qg'n(O) # ¢ for
B ¢ [b,s). Together with the induction hypothesis and Proposition
4.47 leads to
QB,n(O) = {Qs'n(o)}
for B8 ¢ [b,s).
Now we verify that, for any a ¢ (a,b) such that u4(a,b,8) <2
and for any B8 ¢ (b,s)
V;(a,BoB,B) > QBln(O) . (4.74)
Suppose (4.74) were false, by Lemma 4.69 (1)
+
VilarBe0ra) > Q, 144(0)

and

VelasB,8,a) > Q) 144(8) if 0 <0 <5 -

Since B < s, by Corollary 1.45 (i),

Vl(Qprorﬁ) < V;(G'SIO'G)

and
V+(0081910) < V+(GvS,9,G) if 0 <9 < ';- .
Thus,
Vila,s,0.a) > na n+1(0)
and
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Valars,8,a) > Q, 144(8) 4f 0 <o <3

which would contradict (4.73).

Next, pick a B8 ¢'(b,s) and let a + a. It follows from (4.74)

that

lim Vl(a:B,S:B) b4 Qg'n(o) .
a+a

ISIE ]

]

Vi(a,8,98.8) > Q5 n(0) . {4.75)

By Proposition 1.76, we get, for a1l 8 ¢ {0,

Since 8 ¢ (b,s), by Corollary 1.45 (i),
U.:.(alblola) < V-;-(alslola) < U;.(aoSpD,a)
and (4.76)

V,(a,b,8,a) <V, .(a,8,08,a) < V,.(a,s,6,a) if 0 <8 < %-.

V;(a,B.O,a) if g =0

€4 = . .
V+(a'B.9,a) if 0 <9 ¢ 3‘ .

Since b = z 1(83 n+1(8),8) and s =z 4(£4,8), (4.76) leads to

Q:'n+1(e) CEg<CEg . (4.77)

Suppose equality holds in (4.75). Then it is clear that
Eq € Q;‘n+1(9). But this together with (4.77) leads a contradiction
to the fact that (A7 1,1(8),61) N Q@ n¢1{8) = g. Therefore we must
have
Vita,8.6,8) > Qg ,(0) .
By Lemma 4.69 (ii), this leads to
+
€q < na,n+1(e)

which is contrary to (4.77). Thus we complete the proof.
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Now, it remains to prove Theorem 4.11. We first prove two lemmas
from which the result is immediatc, so as to simplify a later argqument

in Theorem 5.1.

Iemma 4.78

Assume the hypotheses of Theorem 4.7 are satisfied. ILet a » O,

0< 86 < %- be fixed. Then Qi are continuous functions of )\ and
lim QX)) =0 . (4.79)
1*0+

Proof

From Corollary 1.72 and (1.75.a), there exists a continuous

function k(A) such that

lim k(A) =0
A+»0

and
+
Qn(k) < k(A) .
Thus (4.79) immediately follows.

Next, for the continuity of Q;(x). Let {Ak} be a sequence

such that

lim Ak = AO >0 .

k+»
Since {\,} is bounded, by Corollary 1.72, {an(A)} is bounded. By
passing to a subsequence if necessary there is a number L, such that
Q;(Ak) + L as k+ = Since (Ak.n;(kk)) € 30;, (Agrly) € BD; and
hence L, ¢ SD;(XO). From Proposition 4.38, we know L, # 0. Hence,

by Proposition 4.12, L, = Q;(Ao). Since any convergent subsequence

W' Y M A AT 0 w Ly W M . .
3,6% 8 ¢ Py, 't AL 0100 QDR a0 Yy WY ", Wy M * o “ WA "~ - \ m noom M
R AT N A 0 T T 0, G A N S R g iSRS EL SRR TR
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of {Q:(Ak)} must converge to n;(xo) we have
+ +
lim Qn(k) = Qn(Ao) .
X*Ao

Q, can be treated similarly.

Proposition 4.80

Assume (r.1), (F.1)-(F.4) and (£f.1) are satisfied. lLet a » 0,
0 <9< %- be fixed. Consider g » 0, £g > 0 (resp. < 0) and a
sequence (A,,g,) C D; {resp. va) such that

) 9
Suppose furthermore that, for Xk = 0,1,2,.¢., vy = Uy (A /Ex,8,+) is a
solution of (I}, with A =}, 4in (1.1.a). Then Vi + vg in
#'{a,2) N L7fa,=) as Kk + .
Proof
From Lemma 1.7, we know v (x) + 0 and wvg(x) + 0 as x + .
Thus, a similar argument to the one used to obtain (2.15) yields
®

L)
[ wdtiat ¢ —vpavdx) + A [ r(e)vice)at . (4.82)
X x

oS

From Corollary 1.56, we know .

v_(lk,a(”'x) < Vk(x) < V+(Xk'a,ﬁpx) . (‘083)

LA -._q [ J

Fj Put A = sup {Ak}. Corollary 1.17 tells us that
!:." k)O
I."
gg |Vi(kk,a.w,x)| < |Vt(i.a.o.x)| respectively . (4.84)
-~ - -
P: Therefore, letting c(x) = Hax{V+(A,a,m,x), V_(X,a,=,x)} , we have
‘;‘I
N
oY [op(x) | < e(x) (4.85)
d and clearly, by Theorem 1.2
lim C‘x) =0 . (4-86)
Y X+

D R S A L P P R L I
it }A... 9 .'}-P_.I_\J‘.‘J' "‘J\:l\ S W D

e a R A
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P
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-

-

From Corollary 1.72, we know

:
'.‘ .
o : e < X, (1 ,a) < K,(X,a) . \
¢ b k Lﬂ {a,=) 4k 4
- This together with (4.85) and (4.86) implies ;
o
a‘ 1im Ivk(x)vi(x)[ = 0 uniformly in k .
) X+

»
D =
B P 2 ~

k Also, (4.83), (4.84) and | Vt(x,a,m,t)dt + 0 as x + = imply

x
PN o 3
AJ 2 s e . y
1lim f vi(t)at = 0 uniformly in k . ‘

) X+® X ‘

Therefore, from (4.82) we know

-«

& lim | viz(t)dt = 0 uniformly in k .
[~ X+® X )
N '
4 Thus, given ¢ > 0, if x is large ,
ir

N [ ®
) 2 '2 ‘
{ [ vi(t)at + [ viS(e)at < ¢ for all k> 0 . .
“ x k x ]
" ‘
y Since (Ak,gk) > (xo,go), the basic theory for continuous dependence !
N of initial value problems leads to :
I'
; x '
‘ 2 2 1
o ] lvk - vol + lvi - vbl dt < ¢ )
: a
o for large k. Hence N
.: .

~ x

'S 2 2 2 3

H [a,=) a .
4 @ i
. 2 2 )
+[ v = vol®+ lvy - vyl“at

L x
o @ o
> ce+2f VA +vite) + wide) + vpd(eae
3 x
w < Se \
"

- - .
-
—

4 . c.‘nl l‘c v ﬂ 3 n.C'-. l.l.o Sty



RO YO RO PO R RN oL

Since for any x ¢ [(a,=)

lvy(x) = vo(x) ]2

® .
~2 [ (v(t) = vgle))(vi(t) = vi(t))at
X

0 o

2

\v v uz
k 0 H (a,=) h

58- ]

We complete the proof.

Proof of Theorem 4.11

Let ui(k) = Ua(x,Qi(X),-) respectively. Then the result easily

follows from Lemmas 4.78 and Proposition 4.80.

PLEE Rt i i it

‘W AR LRI LI » B . \

, ] )‘ L] "" LY RIS e % % A S BN TN Ve N “u - e AMIETARE e Y N

W ) WA K Bt LA ‘. R AR ". " U‘ “ o . f-f#' "‘-'\ 'y "-\ R el e AN A, "ﬁ"v' f\r--f.‘?_.-’\fk )
A 3 ! A " » ! N ' T s O




ATURS R AVEAG T AL R R R R B R T e W S O Wy oy 7 W WU Wy we e, e W
n KNI ] Sl L e AR G A LA AL S AL AL S aee e ary 5",
o

§5. BIFURCATICN FROM THE LOWEST POINT 6F THE CONTINUOUS SPECTRUM OF
THE LINEARIZED OPERATOR
In this section, our aim is to give a bifurcation result which is
applicable to more general nonlinearities than those of §4, that is,
F(x,y) satisfies (f,2), (F.2), (F.3), (F.4) and

(F.7) There exist § > 0, X > 0 and functions ¢ ¢ c1([0,m),[0,m)),

wecl([0,0),(0,2)) such that F(x,y) = ¢(wix)]y|%) if x> X
and |y| < §. The function | satisfies ¢(0) = 0 and for
t € (0,o), $'(t) > 0, P(t) > p « t9 for some constants
p.q > 0. The function w satisfies
wl
(w.3) ;—-) >0 for x ¢ [X,»).
It is also assumed that xr(x) satisfies
{(r.3) r € Cl{[0,0),(0,0)), r(x) =1 for x ¢ [X,»).

We will show that there exist infinitely many connected components of

AR ol

solutions of (1.1) which are distinguished by nodal properties and

P

these components bifurcate from the line of trivial solutions at the

L

point ) = 0. To be more precise, we will prove
Theorem 5.1

Assume (r.3), (£f.2), (F.2), (F.3), (F.4), (F.7) and (w.3) are
satisfied. Let E be the Banach space #f{a,=) N L®[a,=). Then, for
every n ¢ N, there exists an unbounded connected component c:
(resp. C;) C [0,») x E, emanating from (0,0) such that if
(A,u) ¢ C; (resp. C;i and A > 0 then u ¢ S;'n(x,e) (resp.

S; n)' Moreover, C; (resp. C;) N ({1} xE) # ¢ for every 1 > 0.
’
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Remark 5.2

Note that the assumptions of Theorem 4.11 are stronger thag those
of Theorem 5.1. Hence, so is the fesult.

Our approach ic based on a method of which variants have been
used in [9], (10), (13)1, [33], [37), [41), [42] etc. A detailed

description and proof can ke found in ([(41], Appendix) or ([42], §3).

Proof

For fixed a » 0 and 0 < 9 < g- we let S;(m) = {(A,1) e R x E,
(A,u) satisfies (1.1), u > 0 in a deleted neighborhood of x = a,
u has exactly n - 1 simple zerces in (a,=)} U {(0,0)}, n > 1.
let ( be any bounded open set in R x E with (0,0) in its
interior. By ([41], Theof;h A.6), it suffices to show

(1) Sit=) n 20 # 4.

(11) S;(o) is closed and its bounded subsets are relatively compact.
and the last assertion of the theorem. Since the latter follows from
the unboundedness of C; and-Corollary 1.72 we only need to prove (i)
and (ii).

We prove (i) first. Let SY(b) = {(A,u) ¢R x c'la,b], (A,u)
gsatisfies (1.4), u > 0 4in a deleted neighborhood of x = a, u has
exactly n - 1 simple zerces in (a,b)} U ((u,(b),0)} where
Hn(b) = un(a,b,e) was defined in (1.41.a). From a result of
Rabinowitz ([24], we know, for b > a, there exists a connected
component c;(b) C S;(b), containing (un(b),0), such that C;(b) N
({\} = clia,b]) # ¢ for every X > u,(b). Ffor each (a,u) ¢ C;(b)'

we extend u to be zero on (b,») and identify c;(b) with an

'-"-\

"' ~
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unbounded connected subset of R x E. Ilet ({by,} Dbe an increasing
sequence such that b, + +» as k » +». By (1.41.4d), (un(bk):03 €0
for all large k. Hence, there exists (kk,uk) € C;(bk) N 30 for
such k. Since 0 is bounded {*>)} is bounded. Using an argument
analogous to the proof of Theorem 1.2, we may assume, without loss of
generality that there is a 15 » 0 and uyj ¢ cz[a,w) N H’[a,m) such
that

A * A . (5.3)

2
. = ug uniformly on compact subsets of [a,») . (5.4)

Then a slightly modified version of the proof of Proposition 4.80
shows that wup > u; in E. Since () ,u.) € 30, (Ag,ug) € 30. If
Xo = 0, Lemma 1.57, (5.3), (5.4) and (1.75.a) yield u = 0. Since
(0,0) ¢ 0 this would contradict (ig,ug) € 30. Hence 215 > 9. To
show (1g,uq) € S;(w) we need to prove
ug # 0 (5.5)

and

u, has exactly n - 1 zeroes in (a,») . (5.6)
To show (5.5), let

ui(a) if 8 =0

S = if o i
uk(a) <9 < 2
A0
for k = 0,1,2,... . Since g > 0, by (5.3), 3—'< A € 24y for

large k. Invoking Proposition 4.38 yields }Ekl > en.q for such k.
Hence, by (5.4), ]50] > €q-9+ Thus ugy cannot be the trivial

solution.
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In order to prove (5.6) we recall the notatien D; n{h.8),
’

+
Qa,n{,8) and Ua(i,g.,8,¢) introduced in §4. It suffices to show

Proposition 5.7

N

Suppose the hypotheses of Theorem 5.1 are satisfied. Let a > 0,
0<8 < and neN be fixed. Let gy € (Dy n(0s8) U Q5 (3,8
and (A, £y) +» (AgsEg) as k » = Let wug = Uy(rg,Eg.8,°). If
Ag > 0 and (Ag,ug) satisfies (1.1) then £y € Q3 (Ag,80)-

Since the proof of Proposition 5.7 needs some preliminaries we
postpone it. Now we prove (ii). Let {(Ap,u)} C S;(w) such that
(Agr,ug) + (Agreg) in R x E. By the same reasoning as in (i), this
implies that there exists a subsequence, still denoted by [(Xj,uy)},
such that (5.3) and (5.4) hold. If Ay = 0 Corollary 1.72 and
(1.75.a) imply ug = 0. Suppose Ay > 0. The same argument takes
care of (5.5) together with Proposition 5.7 gives (5.6). Hence
(Agoug) € S;(w)- So S;(w) is closed. . To show the se¢ond assertion
of (ii), it is sufficient to pxove any bounded sequence of S;(o)
contains a convergent subsequence. Let {(Ap,u)} C S:(w> be
bounded. Then the same line of reasoning as in (i) shows that there
exists a subsequence, still denoted by {(Ax,ux)}, and 2ig > 0,
ug € c?la,=) N H'{a,=) such that (5.3) and (5.4) hold. By
Proposition 4.80, uy + ug in E. Thus, we complete the proof except
for showing Proposition 5.7.

We begin with the preliminary work for the proof of Proposition

5.7.

w
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Lemma 5.8 é
Assume the hypotheses of Tneorem 5.1 are satisfied. Given X > 0 :

4 2

there exists an a4 = a,(f) such that for X ¢ (0,X], if a » xq R
N

then any solution u satisfying ¢

-u” = Ar{x)u -~ F(x,u(x)) , (5.9.a)
u(a) = 0, u(B) =0 (resp. u e L2[q,=)) (5.9.b)
is also a solution of
-u" = Au - Y(wix)[u|9u , (5.10.a)
u(a) = 0, u(g) =0 (resp. u e L?[q,®)) . (5.10.b) !
Proof .t
By Corollary 1.72 ful _ < K3(A,a). Since for i e (0,il,
L (a,=)

K3(2,a) » 0 as a + ». The same arguments as those in the beginning
of the proof of Theorem 3.1 give the result.
Lemma 5.11

let ¢ be a constant. If u is a solution satisfying the
equation -u" = ju - w(w(x)[ulo)u then v = cu is a solution

‘satisfying the equation =-v" = Av - w(T(X) Iv]9)v.
c

Proof

This follows from the calculation:

-y" = -cu”

= Acu = P(wix)]u|%cu

-y - w(w(xz Ivlo)v .
el

Proposition 5.12

let a>0,A>0 and 0< 8<% be fixed Let Q =0y 5(1,0)

I
r

be the initial value (defined as in Proposition 4.12) such that

)
;
:
)

-
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Ua(x,ﬂ,e,-) is the unique (up to the sign) one~node solution of
-u" = Au - Ylexp(zx) ju]9u , (5.13.a)
ula)eosd - u'(a)sing = 0, u € L?(a,=) (5-13.b)
with the node z = za’1(1,n,e). Suppose the function w satisfies
(w.3). Then any one-node solution which satisfies
-u” = Au ~ P(wix)|u|%u , (5.14.a)
u(a)cosd - u'(a)sing = 0, u e L2[a,m) (5.14.b)
cannot have its node exceed z.
Remark 5.15
As mentioned in Remark 4.15 (b), we use the notation Qalz(x,e)
instead of n;,z(x,e)-
Proof
Let ¢ >0 and b=Db(e) =z +¢. Let u; be the positive
solution which satisfies

w(b)

B - . = - —— o . L ] -
u Au ¢(exp(;b) exp(zx)|u|%)u , (S.16.a)
u(alcosd - u'(alsing = 0, u(b) =0 (5.16.b}

and .“2 be the negative solution which satisfies (5.16.a} and
boundary conditions

| u(d) =0, ue L3[b,=) . ’ (5.17)
let ug and ug be the positive solution which satisfies (5.13.a),
(5.16.b) and (5.14.a), (S.ie.b) respectively. Let uy and ug be
the negative solution which satisfies (5.13.a), (5.17) and (5.14.a),
(5.17) respectively. Note that the existence of u,, v, and ugq
follows from Theorem 1.2 and the hypotheses of {§ and w. To insure

the existence of u,, uy and ug we argue as follows. Since the

a0 G VL RG LS OF, CL RN RS Py,
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restriction of UQ(X,Q.G,-) to [a,z] 1is the unique positive

v solution on that interval, by Proposition 1.43,
v A > yqla,z,8) .

This together with b > z and the fact that u1(a,-,s) is a

k decreasing function yields A > uy(a,b,8). Then by Proposition 1.43

again implies the existence of uy, vy and ug.
Now, from the assumption (w.3), it is easy to see that
w(blexp(zx)/exp(zb) < w(x) if x » b

and

> wix) 1if x < b .

Hence, by Corollary 1.17

ug(b) < uj(b) (5.18.a)
and
ué(b) > uj(b) . (5.18.b)
Next, we claim.that
ué(b) < uz(b) . (5.18.¢)

We prove this indirectly. Note that the nonlinearity in the equation
{(S5.13.a) satisfies the hypothesis of Corollary 4.9. Suppose ué(b) =
“5(b) this would imply the boundary value problem (5.13) has another
one-node solution aside from Ua(x,n,e,o) which is contrary to
Corollary 4.9. If wuj(b) > uj(b). since uj(b) = -n1'b(k,0), by
Lemma 4.69

€ < Q4,2(2,8)
wvhere

ui(a) if 9 =0

E -

x
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On the other hand, since g
i
z°'1(k,9,9) = 2<Db =fza'1(A.E,6) :
(4.13) yields .
E > nalz(lle)
which contradicts an above inequality £ < QG’Z(A,B)- Therefore
(5.18.c) must be true.
Let ¢ = (exp(cb)/w(b))1/°. Sy Lemma S5.11,
uj(b) = cujib) (5.18.4)
and
uy(b) = cuj(b) . (5.18.e)
Combining (5.18.a)~(5.18.e), we obtain
ué(b) > ut(b) . {5.19)

Thus, there is no one-node solution whose node is at b. Since this
is true for any b{g) with e > 0, the proof is completed.

Remark 5.20 ~
The fact that (5.19) is true for all b{eg) with ¢ > 0 will be

used in the proof of Proposition 5.7.

Proof of Proposition 5.7

Suppose U,(\g,Eg,8,*) has j - 1 zeroes in (a,») for some
1< 3 ¢n. We first assume Ey € Q5 n(Ax,9). If 3 > 1, by the
continuity of Za,5-1

23,3_1(Xk.5ko9) < za,j-1(x015018) + 1

for large k. Pick a sufficiently large a3 so that

aq > Max za'j_1(lkr§ko9) (5.21)
k>1
and Lemma 5.8 holds for a » a4 In particular, taking a = ay Wwe Y

E
E
E
s
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know Vt(j)(kk,a,b,o,-) and Vt(j+1)(lk’b'”'°'°) are solutions
satisfying (5.10.a), where b = b(eg) was defined in the proof of
Proposition 5.12. By Proposition 5.12 and Remark 5.20 we have

IV{.(j)(Xk,u,b,O'b)l > ‘U"r(j+1)(xk’b’°°'°'b)! . (5.22.a)
By (5.21) and (1.49)
l"%(j)‘*k'zj-1rb'°:b>| > !V;(j)(xk,a,b,o,b)l (5.22.b)

where Z4aq = za,j-1(kk'5k'6)' Hence

l"%(j)‘*k'zj-1'br°vb)[ > IV;(j+1)(Ak,b,w,o,b)| . (5.22.c)
Since (5.22.c) is true for every b(eg) with ¢ > 0 we claim that
Uy(AygrExs9,+) cannot have its j-th zero exceed za,1(xk,g,0), where
Z4,1(2k,2,0) and Q@ = Q, 5(Ay,0) were defined in Proposition 5.12.
Indeed, suppose j =n - 1 we have

V;(j)(kk,zj_1,zj,0,zj) = Vi(5+1) (Agr25,200,24) (5.23)
where zy = za,j(xk,gk.e). Thus (5.23) would be contrary to (5.22.c)
if zj > 26'1(Ak,n,0). If j <n-1, we have

Ve(3) Akr24-1s25,0,25) = V;(j+1)(xk,zj,zj+1,0,zj)

‘jhere Zj+1 = za'j+1(Xk'Ekle)o By (1-47)

,V{(j+1)(Xk,2j12j+1,0:2j), < ,V§(j+1)(lkyzjo°,0pzj)| . (5.24)

Hence

Marea s 4 |

IVi(g) Qkrzgm1025:0029) ] € [Vi(501) Oxrzgom,0,29) ] (5.25)
which again would be contrary to (5.22.c) if zy > zQ’1(xk,ﬂ,0).
Therefore, in either case, U (Ay,£y,8,¢) cannot have its j~th zero
exceed z, 1(Ax.0,0). .since zy,q 1s continuous in A and § and
by Lemma 4.78 Q = Q, 5 1is continuous in 1, zy, q(+.04,2(+,0),0) 1is

a continuous function of . Since {)Ax} 1is bounded, there exists a

o T T TEe M e & 4 R EEml Y N F_
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Max 20'1(1,(,9“'2(1,(,0),0) < B
k>1

which implies ) b

" mMax z, SO.63,0) < B . (5.26)
k>1

1

Since {u,} converges to wugp, uniformly in the ¢ -norm, on cempact

subintervals of (a,=), (5.26) implies ug must have at least j
zerces in (a,») which is contrary to our assumption that ug has
3 = 1 zeroes in (a,=).

If j = 1, a slight modification in the above argument shows the
same kind of contradiction occurs. We canly sketch the significant
difference: the points za,j+1(xk'5k'5) are replaced by a for all
k. Thus a new version of (5.21) can be easily satisfied. Since
Corollary 1.32 and (1.49) imply

[V 4y Oxearbi8b) ] > (VL 5y Oyrarb,0,B) |
which replaces (5.22). By the same reasoning

[Vicy) Oxranb,8,0) | > [V25,q) O sbrmi0,b)] (5.27)
which is (5.22.c) in this case.

Next, suppose &, € D;'n(kk,e). This case only requires a slight
modification of the proof cf the previous case, so we only indicate
the significant differences as follows: let b, = zaln(xk,gk,e),

k=1,2,3,... « The functions Ua(Ak,Ek,B,O) are understood to be

defined on their maximal interval of definition. From (1.47) we know

[Vi(3+1) Oxrbrm, 00D | > IV;(j+1,(xk,b,bk,o,b)| .

This together with (5.22.c) yields
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which is (5.22.c) for this case. Finally replace « by by in

St P o ot oF

(5.23)~{5.25) and (5.27).

x_w
-

Do

Since any sequence {gk} contains a subsequence which lies in

one of the above cases we complete the proof.
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56. ANALOGOUS RESULTS FOR RADIAL SOLUTICNS IN HIGHER DIMENSIONAL
CASE_ZS
In'this section, we consider the partial differential equation
A% = AR(0U(x) - F(x,8(x))8(x),  x RN (6.1.a)
and seek
2 e L2(RY) N c2(rY) . {6.1.b)
It is assumed that 2 : RN » (0,=) and ; : RN x R + [0,=) are
radial symmetric, that is, there exist functions r : [0,) + (0,=)
and F : [0,=) xR +» [0,») such that
- %x) = x(p)
and
F(x,y) = Fp,y) _
for x ¢RY and p = [x[. Since our aim is to look for radial
solutions of (6.1), (6.1) is equivalent to studying

N -1

-y® -

u' = Ar{p)u - F(p,u)u, 0 <p < 4w, (6.2.a)
©
u (o) =0, [ ¥ Tu2ap < 4 (6.2.b)
0 .

where and througﬁout this section prime always represent
differentiation with respect to the radial variable.

Besides assuming (r.1), (F.1), (F.3), (F.4), (F.5)' (where it is
understood p plays the réle as x did in the one-dimensional case),
we replace (F.2) by (F.2)'.

(F.2)* There exists positive numbers ¢; and continuous functions

wy ¢ (0,®) + (0,@) which satisfying

109
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J o luy  tdp < +=, i=1,2 . (6.3)
0 |

g
such that F(p,y) > w1(p)|y| 1 for pe [0,®), Yy> 0
c
anéd F(p,y) > mz(p)!yl 2 for p € [0,=), ¥y < O.
Remark 6.4

If we let Gi(x) = wy(p) for x ¢ RY ana ]x[ = »o then the

-2/0,
growth condition (6.3) is equivalent to the condition f Gi “dx ¢ =

RN

which has been imposed in (3] and [8].

Our goal is to generalize the results of §1-5 to this radial
case. The arguments parallel those of the earlier sections.
Therefore we will be more sketchy with details than earlier.

A new difficulty in treating problem (6.2) is that it has a
singularity at the origin. Thus in the spirit of the earlier

sections, we approximate (6.2) by

w _N-1 - -
-u >+ e u' Ar{plu F(p,u)u , {6.5.a)

where € > 0 and Db ¢ (0,»). We will apply a global bifurcation
result of Rabinowitz ([24], Chap. 4) as well as obtain certain
estimates for solutions of (6.5). To do so, we look at the following
equivalent problem:

-((p*e)““1u')' = Ar(p)(p+e)N'1u - (p+e)N'1F(p,u)u ' (6.6.a)
(II)b,e

u'(0) = 0, u(b) = 0 . (6.6.Db)
If (IDp,¢ is linearized about the trivial solution u = 0 we get

-((p + )Ny = Ax(p)(p + )Ny , (6.7.a)

v'(0) = O, v(b) = 0 . (6.7.b)
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et §;'E'n(k) {resp. E;’e,n(k)) be tﬁe set of u ¢ c2[o,b} such i
that u satisfies (6.5), u > 0 (resp. < 0) 4in a deleted . )
neighborhocd of x = 0, and u has exactly n - 1 s=imple zeroces in
(0,b), where A >0 and n » 1 is an integer. If (r.1), (F.1),
(F.2)!', (F.3) and (F.4) are satisfied, a direct application of the
global bifurcation theorem of [24] shows that (II)b,g possesses two
unbounded components C;(b,e) and C;(b,e) of solutions in

R x c'{o,b]. Both contain (u,,0), where-—4u, = pp(b,e) is the n-th 4

eigenvalue of (6.7). If X > 1 and (),e) ¢ C;(b,e) (resp.

- ~+ ~— A
Cnfb,e)), then u ¢ sb,s,n(k) (resp. Sb'e'n(l))- Furthermore, a

'

result we mentioned in Remark 1.44 shows that the projection of ’

C;(b,e) (resp. C;(b,s)) on R is [ug,»). Also, a versicn of
Proposition 1.43 holds here.

In order to obtain results for the limit problem, we need some
estimates as follows. . : . . Y
- Lemma 6.8

Assume (r.1), (F.1) and (F.2)' .are satisfied. ILet X > 0 and
) > 0. Then there e;ist constants is =.§5(A,so) and
is = ﬁs(x.eo) such that for all ¢ ¢ [0,eg] and b e (0,») 4if u

is a solution of (II)b,e

R

b

] to+ e e < % (6.9.a) ‘
0

and

[ o+ N2 ¢k . (6.9.b)

[-]
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Proof

We argue like the proof of (1.58.a) and (1.58.b). Let

2 2/c; P ~2/0
kg = kg(A,b,e) = i§1 (Ar,) *(£ (o + )1y, " "1ap) ana

kg = kg(A,b,e) = (Ary)kg()A,b,e). Then the same arguments as the
proofs of (1.58.a) and (1.58.b), except for the presence of the extra

weight (p + g)N’1, show that

b
[ (o + e T2dp < kg(r,b,e) (6.10.2)
o
and
b
[ o+ ¥ Nr2ep ¢ x(A,bse) . (6.10.b)
0
2 /0y = ~2/0 .
Letting K (e ) = [ Or) 2(f (p+egd™ Tu" dp) and
5100’ T L2 A

i’s(x.eo) = Or,)k (A,e ). We have (6.9) for any e e [0,eq] and
b e (0,=).
Remark 6.11

By assumption (F.2)', it is easy to see that Qi(k,eo) < +o for
any A >0 and g4 > 0, 1 = 5,6.
Lemma 6.12

Assume (r.1), (F.1) and (F.2)' are satisfied. Let A > 0, b > 1
and € ¢ (O,eo). Let u ﬁe a solution of (II)b,e‘ Then there exists
a constant kg = kq(i,e5) such that

ut < ky o (6.13)
L"{C,b]

P AL IO I T e s T TR e T o e R ¥} e -
T TN A A A A A AT A A A AT N AN




-——

A MO RRNA N L SR L S RTGE LT S0 6.0 1R AT o ol e, 100 ava " Juat o

113

Proof

Arquing like the proof of (1.57.c), we have, for x ¢ [1,b],

that

N

b b
u?(x) < 2(f uzdp)1/2(f u'2ap)1/2
x x

b b
<2x+ )N (f o+ VW)V (o + N Tur2g) 172
x X

<20f o+ oV V(g

0 0

@ [ -]
<[ (p+ ¥ ulqp + [ (p+ ¥ Nur2g,
0 0

o~ L d 1 .
let kg = kg(i,eg) = (k5 + ks)./z. By Lemma 6.8, we have
Tul < kg . (6.14) 7T
L°[1,b]
- . - Vo,
Next, let @; = Min w3, i = 1,2 and kg = Max((Ary/uy) ’
96[011]
- - 1/02 . N
(Ary/a,) » kg)e If |ulp)] < kg for all p € [0,1] we have

completed the proof. Otherwise, lél M= Max [u(p)[, fu[ must be
pel0,1]

equal to M at some>point t‘e f{0,1). Suppose u(t) =M then u
attains its maximum at t. Suppose t = 0. Since u'(6) = 0,
u”(0) < 0. It foliows frog (6.5.a) that

F(0,u(0)) < Ar(0) .
This together with (F.2)' and (r.1) leads to

1/01
M < (Ary/ug0)) ' .

If ¢t ¢ (0,1), then u'(t) = 0 and u"(t) < 0. The same argqument as

above shows

a o 1%y ghovaty s L St tal Boh ad
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1/a "
M < (Axp/uqg(t)) 0.

Therefore, in either case, we have

' - 1/(3.l
M< (lrz/m1) .

Suppose u(t) = -M then u attains its minimum at ¢. By an

analogous argument, we get

- 1/02
M< (sz/wz) .

Bence (6.13) easily follows.
Lemma 6.15

Assume (r.1), (F.1) and (F.2)' are satisfied. Let 8 > 0 be
fixed. For any b > 8 if u 1is a solution of (II)b,s and

tut < M then there is a constant kg = kg(A,8,M) such that
L {0,8]

for p ¢ [0,8]
[ut(p)| < kg » p (6.16)
Proof
Integrating (6.6.a) over [0,p] together with (6.6.b) yields
(p + e)¥lur(p) = fp (F(t,u)u - Ar(t)ul(t + ¢)¥ lat .
0
Invoking the mean value theorem for integrals, we get
o + ¥ (o) = ats)s + )%
where A(s) = [F(s,u(s))u(s) - Ar(s)u(s)] for some s ¢ [0,p].
Letting kg = kg(A,8,M) = oMax [F(t,y) + Arpl]y|, (6.16) now easily
<t<8

0<y<M

follows.
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' Next, we state the uniqueness and existence result for positive _'

:: (resp. negative) solutions of (6.2) as follows: ' o

) -

i Theoren 6.17 . ’ )

| g

R [y

! Assume {r.1), (F.1), (F.4) are satisfied. Let A > 0 be fixed. v

t

s If u4y, u, are two solutions of (€.2) such that uq, Uy > 0 (resp.

4

: < 0), then - -

‘ ]

\ o
Uy = U, in {[Q,=) .

‘, Let L;‘;[o,w) be the weighted Hilbert space of u such that By

'

@ "
™ [ uw2(p)p™dp < . Define H;[O,w) by u e H;[O,m) if and only ¢
y 0
3 if u e Lgio,w) and u' ¢ L§[o.a)- v
) Theorem 6.18 ~4
. 3
- Assume (r.1), (F.1), (F.2)', (F.3) and (F.4) are satisfied. :

Given X > 0 there exists a positive (resp. negative) function 3

s u e c2[0,=) N H;[O,a) satisfying (6.2) such that N

' . -

lim p{(N=1/24¢5) = 0 (6.19.a) -3

p+® "

! 3

y _and K

1 lim p(F=1/241 () =0 . _ (6.19.b) :f

pre v

. Remark 6.20 R

Nt

2 (a) In fact, we will show every solution of (6.2) belongs to K

' c2(o,») N n;[0,m) and satisfies (6.19). N
?

N (b) If u e C2[0,®) N H;[O,w) and satisfies (6.2) by letting -
)

C G(x) = u(p) for lxl =p and x ¢ RN, then @ ¢ CZ(RN) v

: N H’(RN) and satisfies (6.t1.a).

1 -
A
A

X

i v

) ~
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{c) Theorem 6.17 as well as "monotonicity" properties like
Corollaries 1.17, 1.32 and 1.45 actually hold for positive (resp.
négative) solutions of (6.6) with ¢ » 0. Their proofs are the
same as the earlier ones with only the equation (1.1.a) changed

to (6.6.a) and the decay of solutions 1lim u(x) = lim u'(x) =0
X+ X0

to (6.19). Therefore we omit the proofs.

Proof of Theorem 6.18

Let {b,} be an increasing sequence and {g)} be a decreasing

r'; £ nw

‘>

~

sequence such that bk + » and €x * 0 as k » ». Let

W s

u = V,(A,by,ex,), the unique positive solution of (II)bk:ek' By

Lemmas 6.12 and 6.15, we know for all bk > 1, €x < €gs there is a

>y
P

’

constant Cy = Cq(A,by,e9) = Ky + Kg « b, where Kg = Kg(A,by.,Ky), 4
Ly
A

such that for all ¢ > k Y
.;

fu,l < C
1 1
Yeltop
and
ui(p)
Max 3 < k9 .
pelo,b) 1P 7 €

By the same line of reasoning as in the proof of Theorem 1.2, there N
exists a subsequence {ukj} and a u ¢ cz[o,c) N H;[O,a) such that i‘
..L"
o2 =~

v —u uniformly on compact subsets of [0,=) . (6.21) -

3

This together with (6.16) shows u'(0) = 0. Also the same sort of

REAPRAS

argquments used in the proof of Proposition 1.76 shows u cannot be

the trivial solution.

"
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To show (6.19) holds, we make the transformation v = p(N'1)/2u.
Then (6.2.a) takes the form

(N - (N =-123)

492

-v" = [Ar(p) - - Flp,v)lv (6.22)

where F(p,y) = F(p,p(1-N)/2y). Taking an a > 0, viewing v as a
solution of (6.22) on the interval [a,»), and using (6.2.b), we see
v € Lz[a,m). Invoking Lemma 1.7 yields v(p) + 0 and v'{(p) + 0 as
p + ». Thus (6.6) and (6.7) follow.

Next, the existence c¢f solutions possessing a prescribed number
of nodes will also ke established. Let §:(X) (resp. 5;(k)) be the
set of u ¢ C2[0,0) N H)[0,%) such that u satisfies (6.2), u > 0
(resp. < 0) in a deleted neighborhood of x = 0 and u has exactly
n -1 simple zeroves in (0,»), where A >0 arnd n > 1 1is an
integer.

Theorem 6.23

- Suppose (r.1), (F.1), (F.2)'—- (F.3), (F.4) and (F.5)' are
satisfied. lLet A > 0 be given.- Then 5 (1) and § (1) are
nonempty for all n ¢N-.

Proof

We first neéd a new version of Lemma 2.52 provided that (r.1),
(F.1), (F.2)*, (F.3) and (F.4) are assumed. Indeed, the proof of
Lemma 2.52 depends on existence, unigueness, continuity and
"monotonicity” tesults.for positive and negative solutions which can

be insured by our hypothesis here. Next, make the transformation

v = p(N=1)/2, as in (6.22). We look at the following problem

L} -+
Bl Tal

hd

A
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(N ~ 1)(N - 3)

492

-y* = (Xr(p) - )v - Flp,vIv , (6.24.a)

via) = 0, v € L2[a,=) . (6.24.b)

_ AN = V(N - 3)

4p2

If a is large enough, Ar(p) > %—r1 for p > a-.

-

Since the function F satisfies (F.5)' and F{p,y) = F(p,p(1°N)/2y),
Flp,=y¥) = Flp,y) if |yl < 6 and p > Max(1,X). Thus the function

F satisfies (F.S5)'. Also F(p,y) satisfies (F.2}' implies that
F(p,y) satisfies (F.2). The remaining assumptions of Theorem 3.1 can
be checked easily. Hence, for every n 3> 2, if a is sufficiently
large, by Theorem 3.1, there exists a vy € S;'n(l) (resp. s;’n(X)).

Let uy = o{?™/2y  ana u; satisties

-u'-N-1

u’ = Ar(pju ~ F(y,uju , (6.25.a)
u(a) = 0, u e Li[a,@) (6.25.b)

and has the same nodes as vq does. The rest of the proof is like
the second half of the proof of the Theorem 3.1. Llet x4 =0, x; = =
and x3, 1<i<n-1, be the nodes of uq. Invoking the

*"monotonicity” properties and the new version of Lemma 2.52 we take

uq as starting point and iterate as earlier to obtain a solution

which belongs to g:(X) (resp. §;(X))-

Ty Y v oy oW
RN T Ve T )

The dimension N = 3 1is rather special. In view of (6.22),
“
5: (N - 1’;“ =3 vanishes 1f N =1 or 3. This enables us to obtain
s 4
I}a
oy more results when N = 3. Assuming

|
»

(P.6)' There are Yq,¥, € C‘([O,-),[O,a)), Y4(0) = y,(0) = 0,

¢;.w5 >0 in (0,») and a positive number ¢ such that

IGN T RRIRRIA Y
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fpe0a(020%ly]), ¥y > 0, p e [0,0) 4

F(p,y) = o , J
Yatwip)p?lyl®, y <0, p e [0,0) ;

¢

where w e C'([0,),[0,)). ?

We can invoke results from §4 tc get the folloewing uniqueness and '
bifurcation resu’ts for solutions of (6.2). .

Theorem 6.26

Suppcse (r.2), (F.6)', (¢.1), (w.1) and (w.2) are satisfied. Let

N = 3. Then, for very A > 0, E:(x) contains at most one element.
~b
If (Y.2) is further assumed, S; has a unique element. Moreover, let )

E be the Banach space H;[O,m) N L°[0,=). Then, for each n ¢ N,
(6.2) possesses two curves of solutions C; and C; in R x E with
ct =t a > 0 U {(0,00) and ui(d) € 5:.
Remark 6.27

Theorem 6.23 is not quite applicable to the existence part of
Theorem 6.26 since F(0,y) = 0 for y eR.
Proof

If ue E:(l), by the transformation v = pu, it is easy to see
that v ¢ Cz[O,N) N H‘[O,w), v(0) = 0, v'(0) = u(0) and v satisfies

(4.5). Thus, if (r.2), (F.6)', (y.1), (w.1) and (w.2) are satisfied,

by Theorem 4.7, gi(k) contains at most one element.

Suppose (y.2) is further assumed. By Corollary 4.9, S%'n(X:O) i
contains a unique element v ¢ C2[O,m) N H’[O,m). From the N
assunptions for the functions y and w, (4.5) shows v" ¢ C‘[O,n) A

and hence v ¢ C3[O,u). Let u(p) = p"v(p) for p e (0,»),

N . u(0) = v*(0), u'(0) = 0 and u"(0) = v'*'*'(0)/3. It is easy to see -




a2

that u e C2(0,=) N n;[o,w) and u satisfies (6.2). We claim
u € C2[0,w). Indeed, v(0) = 0 and (4.5) imply v"(0) = 0. Hence

1im u(p) = lim p~tw(p) = v'(0) .
p+0 p+0

So u is continuous at 0. By Tayior series exgansion, v(p) =
v'(0)p + V"'(O)p3/6 + o(p3)- It follows that

lim u'(p) = lim [pv'(p) - v(p)]/p2 = lim [v'(p) = v'(0)]1/p
>0 p+0 p+0

= y"(0) =0 .
so u'! 1is continuous at 0. Finally v'(p) = v'(0) + v"'(O)p2/2 +

o(pz). Thus

1im u"(p) =limi_[v'(p) - v'(0) -V"'(O)p/s]
v (p) _v'(p) = v'(0) «¥'''(0)
= 1lim - -
p+0( ¢ 2 6 )
P

v (0)/3 .
So ue¢ C2[0,m). It is now clear that u ¢ §:(A).

To prove the last assertion, we note that Theorem 4.11 and the
transformation u = p-1V induce conrn .ted components of solutions of
(6.2) in R x H;[O,m). By an argument analogous to the beginning of

the proof of Lemma 6.12, we have fu, = u_l < lu, = u_l

T2 e,e) ! 25;[0.«»)

1f (Aqeuq),(Ap,n,) € Cﬁ. This together with the continuous
dependence of the solution for the initial value problem

N - 1

u' = ar(p)u = F(p,ulu ,

u(0) = Uy, u'(0) = “6

shows C: are connected in R x E.
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Let f£4(p,¥) = Flo,p~ly)y. Under the assumptions
(€.2)' £4(p.,y) is centinuously differentiable in [0,») x R

and
\
(F.7)' There exists § > 0, X > 0 and functions
v e c1([0,),(0,=)), we cl((0,»),(0,»)) such that
Flo.y) = (w(p)p®lyl®) if p > X and |y| < 5. The
function ¢ satisfies ¢¥(0) = 0 and for t ¢ (0,=),
Ppr(t) > 0, Y(t) » P « t%2 for some constants P,q > C.

We have a bifurcation result which is parallel to Theorem 5.1.

Theorem 6.28

Suppose (r.3), (£.2)', (F.2)', (F.3), (F.4), (F.7)' and (w.3) are
satisfied. Let N =3 and E = Hgto,w) N t*{0,=). Then, for every
n €N, there exists an unbounded connected component C; {resp. C;)
C (0,») x E, emanating from (0,0) such that if (A,u) ¢ C; {resp.

- ~ct ~— -
Cn) and A > 0 then u ¢ Sn(k) (resp. Sn(l))- Moreover, C.

(resp. C;) N ({7} x E) # ¢ for every A > 0.

The proof follows the same strateqy as we used in Theorem 6.26,

80 we omit it.
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